Project Icon

Awesome_Multimodel_LLM

多模态大语言模型资源集锦及研究动态

本项目汇集了多模态大语言模型(MLLM)相关资源,涵盖数据集、指令微调、上下文学习、思维链等多个方面。内容持续更新,跟踪MLLM领域最新进展。项目还将发布LLM和MLLM最新研究综述。这是研究人员和开发者了解MLLM前沿动态的重要参考。

Awesome-Mamba-Collection - Mamba模型在多领域应用的综合资源集
GithubMamba人工智能开源项目深度学习自然语言处理计算机视觉
Awesome-Mamba-Collection项目汇集了Mamba相关的论文、教程和视频资源。涵盖Mamba在视觉、语言、多模态等领域的应用,以及理论分析和架构改进。为研究者和开发者提供全面的Mamba参考资料,促进知识共享和社区协作。适合各级别人士学习Mamba技术。
MotionLLM - 融合视频和动作数据的人类行为理解先进AI模型
GithubMotionLLM人工智能人类行为理解多模态学习大语言模型开源项目
MotionLLM是一个人类行为理解框架,通过融合视频和动作序列数据来分析人类行为。该项目采用统一的视频-动作训练策略,结合粗粒度视频-文本和细粒度动作-文本数据,以获得深入的时空洞察。项目还包括MoVid数据集和MoVid-Bench评估工具,用于研究和评估人类行为理解。MotionLLM在行为描述、时空理解和推理方面展现出优越性能,为人机交互和行为分析研究提供了新的方向。
Awesome-Embodied-AI - 具身人工智能前沿研究资源汇总
Embodied AIGithub多智能体系统大语言模型导航开源项目机器人
本项目汇集了具身人工智能(Embodied AI)领域的精选资源,包括最新研究论文、工具及相关资料。内容涵盖语言模型驱动的智能体、机器人技术、导航等多个方向,全面追踪具身AI的研究和产业进展。为研究人员和开发者提供参考,深入探讨智能体在物理或虚拟环境中的感知、决策和行动机制。
LLM-Tool-Survey - 大型语言模型工具学习调查研究
Github人工智能大语言模型工具学习开源项目综述自然语言处理
该研究系统性调查大型语言模型(LLMs)通过工具学习增强解决复杂问题能力。从工具学习的优势和实现方法两方面全面回顾现有文献,总结基准测试和评估方法,讨论当前挑战和未来方向,为相关研究和开发提供见解。
awesome-ai-ml-dl - 涵盖人工智能、机器学习和深度学习的综合资源和学习平台
AIDLGithubJavaMLNLP开源项目
awesome-ai-ml-dl项目集中于人工智能、机器学习及深度学习领域,提供全面的学习笔记与精选资源。适用于工程师、开发者和数据科学家等专业人员,帮助他们更有效地获取知识和资源。此项目促进了学习的乐趣并使相关资料易于获取。
llms - 大型语言模型的原理与实践应用全面解析
BERTGPTGithubTransformer开源项目自然语言处理语言模型
本项目全面介绍大型语言模型(LLMs)的基本概念、应用场景和技术演进。内容涵盖统计语言模型、神经网络语言模型,以及基于Transformer的预训练模型如GPT和BERT等。系统讲解LLMs核心原理,并探讨模型评估、文本生成和提示工程等实用技术。同时展示LLMs在计算机视觉等领域的创新应用,通过理论与实践结合,为读者提供深入了解LLMs技术的全面指南。
awesome-large-graph-model - 大规模图模型研究前沿综述
Github图提示学习图机器学习图神经网络大图模型大语言模型开源项目
这个项目整理了大规模图模型相关的研究文献,涵盖理论基础和实际应用。内容包括图神经网络与大型语言模型的结合、LLM在图任务中的应用、图提示学习和参数高效微调等技术。同时涉及知识图谱、分子科学和神经架构搜索等领域。项目为图机器学习研究提供了全面的文献综述,有助于推动该领域的发展。
Efficient-LLMs-Survey - 大语言模型效率优化技术综述
Github大语言模型开源项目模型压缩量化高效推理高效训练
本项目系统性地综述了大语言模型效率优化研究,包括模型压缩、高效预训练、微调和推理等方面。从模型、数据和框架三个维度对相关技术进行分类,全面梳理了该领域的最新进展,为研究人员和从业者提供了有价值的参考资料。
awesome-deep-learning - 开源深度学习资源集合,覆盖书籍、课程、视频和研究论文等
Github人工智能大数据开源项目机器学习深度学习神经网络
awesome-deep-learning提供全面的开源深度学习资源集合,覆盖书籍、课程、视频和研究论文等,适合各阶段学习者深入探索。通过更新最新技术和理论,推动知识和技术的不断进步。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号