Project Icon

hBayesDM

分层贝叶斯决策建模工具支持R和Python

hBayesDM是一个为决策任务提供分层贝叶斯分析的开源软件包。它基于Stan进行贝叶斯推断,支持R和Python语言。该工具能分析强化学习和决策制定的神经计算机制,为心理学、神经科学和行为经济学等领域的研究者提供强大的分析支持。项目提供详细教程、邮件列表和问题报告渠道,便于使用和问题解决。

pymc - Python贝叶斯统计建模与概率编程框架
GithubPyMCPython包变分推断开源项目贝叶斯统计建模马尔可夫链蒙特卡洛
PyMC是一个Python贝叶斯统计建模框架,专注于高级马尔可夫链蒙特卡洛和变分推断算法。它提供直观的模型语法、强大的采样算法和推断功能,可处理复杂模型。PyMC利用PyTensor优化计算,支持缺失值处理,并提供丰富的示例资源。作为一个灵活的概率编程工具,PyMC适用于广泛的统计建模任务。
pydlm - 基于Python的贝叶斯时间序列建模库
GithubPyDLMPython库开源项目数据分析时间序列建模贝叶斯动态线性模型
pydlm是一个Python时间序列建模库,基于贝叶斯动态线性模型。它提供了快速的模型拟合和推断,包含趋势、季节性和动态回归等灵活组件。支持前向过滤、后向平滑和长期预测,并具有简洁的API。pydlm适用于构建复杂时间序列模型,进行数据分析和预测。
Bayesian-Neural-Networks - 在PyTorch中实现的贝叶斯神经网络近似推断方法
Bayesian Neural NetworksGithubMNIST分类实验Pytorch回归实验开源项目近似推断方法
项目在PyTorch框架下实现了多种贝叶斯神经网络的近似推断方法,包括Bayes by Backprop、MC Dropout、SGLD和Kronecker-Factorised Laplace。这些方法适用于同质和异质回归实验及MNIST分类实验。项目提供了模型训练脚本、Colab笔记本和实验结果的可视化工具,方便用户进行模型训练和评估。所有依赖和数据集已在笔记本中预设,并支持免费GPU运行平台,帮助用户轻松上手。
BayesianDeepLearning-Survey - 贝叶斯深度学习的不断更新综述
Github人工智能开源项目机器学习概率模型深度学习贝叶斯深度学习
本项目是贝叶斯深度学习(BDL)的持续更新综述,扩展自ACM Computing Surveys 2020年发表的论文。涵盖BDL在推荐系统、领域适应、医疗保健、自然语言处理、计算机视觉等领域的应用。通过定期更新,为研究人员提供BDL最新进展概述,展示这一框架在多个应用中的潜力。
Rbeast - 贝叶斯时间序列分解与变点检测工具
BEASTGithub变点检测开源项目时间序列分解贝叶斯算法趋势分析
Rbeast是一款开源的贝叶斯时间序列分析工具,主要用于检测时间序列数据中的变点、趋势和季节性变化。该工具采用贝叶斯模型平均方法,可分解时间序列中的突变、趋势和周期变化。Rbeast适用于遥感、金融、公共卫生等多个领域的实值时间序列分析。它支持R、Python、Matlab和Octave等多种编程环境,安装和使用都较为简便。相比同类算法,Rbeast具有较快的计算速度。
hdbscan - 灵活高效的层次密度聚类算法
GithubHDBSCAN密度聚类开源项目数据分析机器学习聚类算法
HDBSCAN是一种高性能的层次密度聚类算法,能够处理不同密度的聚类并对参数选择更加稳健。该算法主要参数直观易选,无需复杂调优,适合探索性数据分析。HDBSCAN具有快速可靠的特点,能返回有意义的聚类结果。此外,它还支持异常检测和分支检测,并提供可视化工具辅助理解聚类结果。该开源项目在GitHub上提供详细文档和示例,支持Python 2和3版本。
statsmodels - Python统计建模和数据分析工具包
GithubPython包statsmodels开源项目数据分析时间序列分析统计模型
statsmodels是一个全面的Python统计建模库,提供多种统计方法和工具。包括线性回归、广义线性模型、时间序列分析、生存分析等功能。该项目文档完善,社区活跃,持续更新。适用于数据科学家和研究人员进行各类统计分析和建模任务,可处理从基础到高级的数据分析需求。
bayesian-torch - 贝叶斯神经网络层和不确定性估计的PyTorch扩展库
Bayesian-TorchGithubPyTorch不确定性估计变分推断开源项目深度学习
Bayesian-Torch是PyTorch的扩展库,用于在深度学习模型中实现贝叶斯推理和不确定性估计。它提供贝叶斯层,支持将确定性神经网络转换为贝叶斯形式。库包含变分推理、MOPED、量化和AvUC损失等功能,适用于不确定性感知应用。研究人员和开发者可利用Bayesian-Torch构建更可靠、可解释的AI模型。
RLHF-Reward-Modeling - 训练 RLHF 奖励模型的配方
ArmoRMBradley-Terry Reward ModelGithubRLHFRewardBenchpair-preference model开源项目
该项目专注于通过顺序拒绝采样微调和迭代DPO方法进行奖励和偏好模型训练,提供包括ArmoRM、Pair Preference Model和Bradley-Terry Reward Model在内的多种开源模型,并在RewardBench排行榜中表现显著。项目内容涵盖奖励建模、模型架构、数据集准备和评估结果,适用于基于DRL的RLHF及多项学术研究。
BayesianOptimization - 贝叶斯优化的Python库 高效优化黑盒函数
GithubPython全局优化开源项目机器学习贝叶斯优化高斯过程
BayesianOptimization是一个纯Python实现的贝叶斯全局优化库。该工具利用高斯过程构建未知函数的后验分布,平衡探索与利用来寻找函数最大值。它适用于高成本函数优化,能以较少迭代找到接近最优的参数组合。BayesianOptimization提供简洁API,支持自定义搜索空间、序列域缩减和约束优化等功能,适用于机器学习模型调参等场景。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号