Project Icon

CoDet

共现引导的开放词汇目标检测方法

CoDet是一种开放词汇目标检测方法,采用共现引导来对齐区域和词语。该方法利用大规模图像-文本对训练,在LVIS和COCO数据集上表现优异。CoDet兼容现代视觉基础模型,并可与Roboflow集成实现自动图像标注。这一方法为开放词汇目标检测领域提供了新的解决方案。

GroundingDINO - 语言驱动的开放集目标检测模型
GithubGrounding DINO开放集检测开源项目目标检测计算机视觉语言指导
GroundingDINO是一个基于语言的开放集目标检测模型,能够检测图像中的任意物体。该模型在COCO数据集上实现了零样本52.5 AP和微调后63.0 AP的性能。GroundingDINO支持CPU模式,可与Stable Diffusion等模型集成用于图像编辑,还能与SAM结合实现分割功能。此外,项目提供了丰富的演示和教程资源,为开放世界目标检测领域带来了新的解决方案。
deepdoctection - 文档AI:基于深度学习的提取与布局分析工具包
GithubOCRdeepdoctection开源项目文档AI模型深度学习
deepdoctection是一个Python库,通过深度学习模型实现文档提取和布局分析,支持对象检测、OCR和文本挖掘。此集成框架结合Tensorflow或PyTorch等库,适用于PDF或扫描图片文档处理,支持文档布局分析、表格识别和文本分类等任务,致力于解决实际应用问题,是文档处理领域开发者的理想选择。
FCOS - 完全卷积单阶段对象检测技术
FCOSGithubResNet-50卷积神经网络开源项目性能提升目标检测
FCOS算法是一种完全卷积的单阶段对象检测方法,通过避免使用锚点框,提高了检测性能和速度。在COCO minival数据集上,FCOS实现了46FPS和40.3的AP评分,并在各种模型和硬件上表现出色,包括ResNe(x)t和MobileNet等。与Faster R-CNN相比,FCOS在ResNet-50平台上表现更佳(38.7对36.8的AP),且训练和推理时间更短。该项目已基于Detectron2实现,并引入了多项优化和改进。
CoCa-pytorch - CoCa模型的PyTorch开源实现
CoCaGithubPytorch实现transformer架构图像文本模型对比学习开源项目
CoCa-pytorch项目提供了CoCa(Contrastive Captioners)模型的PyTorch实现。该项目将对比学习融入传统的编码器/解码器transformer,优化了图像到文本的转换。项目采用PaLM的transformer架构,包含单模态、多模态transformers和交叉注意力模块。这一实现为研究和开发图像-文本基础模型提供了有力工具。
Det3D - 提供多数据集和算法支持的3D目标检测工具箱
3D对象检测Det3DGithubKITTIPointPillarsPyTorch开源项目
Det3D是一款基于PyTorch的3D目标检测工具箱,支持多个数据集如KITTI、nuScenes、Lyft,并实现了多种3D目标检测算法如PointPillars、SECOND、PIXOR等。其特点包括高性能、支持分布式训练和同步批归一化,以及灵活的模型配置和可视化工具。Det3D适合自动驾驶、机器人和增强现实等领域的研究人员和开发者。
git-large-coco - 高级视觉与语言转换:大规模图像到文本模型
GITGithubHuggingface图像标注开源项目模型模型训练视觉视觉问答
GIT大型模型通过在COCO数据集上微调,实现图像到文本的转换,支持图像和视频字幕生成、视觉问答和图像分类等功能。该模型利用图像和文本令牌的结合,预测下一个文本令牌,并在多种视觉与语言应用场景中表现出色。
X-Decoder - 像素、图像和语言的统一解码模型
GithubX-Decoder图像分割多任务学习开放词汇分割开源项目计算机视觉
X-Decoder是一个通用解码模型,可生成像素级分割和标记级文本。该模型在多个数据集上实现了开放词汇分割和指代分割的最佳结果,在分割和视觉语言任务上表现出色。X-Decoder支持语义、实例和全景分割,以及图像描述、图像-文本检索等多种任务。此外,它还能进行区域检索、指代描述、图像编辑等零样本任务组合。
grounding-dino-base - 实现开放集目标检测的创新模型
GithubGrounding DINOHuggingface开源项目模型深度学习物体检测计算机视觉零样本学习
Grounding DINO是一种创新的开放集目标检测模型,结合DINO与文本预训练技术。通过整合文本编码器,该模型将闭集目标检测扩展为零样本目标检测。在COCO数据集上,Grounding DINO达到了52.5 AP的性能。此模型支持研究人员直接进行零样本目标检测,无需额外的标记数据即可识别图像中的物体。
mmdetection - MMDetection:基于PyTorch的高效目标检测工具箱
GithubMM-Grounding-DINOMMDetectionOpenMMLabPyTorchRTMDet开源项目
MMDetection是一款专为目标检测、实例分割和全景分割任务设计的工具箱,采用模块化设计,支持多种检测任务,具备高效GPU运算能力。其性能与其他顶级代码库相媲美,且不断保持前沿。结合COCO挑战赛冠军经验,MMDetection提供先进的检测结果,并与MMEngine和MMCV无缝整合,进一步提升研究和应用效果。最新的RTMDet模型在参数-准确率优化及实时实例分割和旋转目标检测上表现出色。
CogCoM - 链式操作助力视觉语言模型精细化理解
AI推理Chain of ManipulationsCogCoMGithub多模态开源项目视觉语言模型
CogCoM是一个新型视觉语言模型,采用链式操作技术逐步处理复杂视觉问题。该项目包含6种基本操作、级联数据生成流程和多轮多图像模型架构。CogCoM在对话、描述、定位和推理等方面表现出色,并在GQA、TallyVQA等多项基准测试中取得优异成绩。这个开源项目为研究人员提供了完整的代码、模型和数据集,促进了视觉语言模型在细节理解领域的发展。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号