Project Icon

HandyRL

高效实用的分布式强化学习框架

HandyRL是一个基于Python和PyTorch的分布式强化学习框架,已在Kaggle竞赛中取得优异成绩。它采用离线策略修正的策略梯度算法和学习者-工作者架构,支持自定义环境和大规模训练。HandyRL的高并行能力和实用性使其在竞争性游戏AI开发中表现出色,能够快速训练出强大的AI模型。

godot_rl_agents - Godot引擎智能NPC开发框架
GithubGodot RL Agents开源框架开源项目机器学习深度强化学习游戏AI
Godot RL Agents是一个开源框架,用于在Godot引擎中开发智能NPC。它支持多种强化学习算法,适用于2D和3D游戏,并提供丰富的AI传感器。该框架完全免费开源,可帮助开发者创造复杂行为的游戏角色,实现自动化游戏测试,为游戏开发和AI研究提供新的可能性。
PufferLib - 复杂游戏环境强化学习的简化工具
GithubPufferLibPyTorch开源项目强化学习环境包装
PufferLib是一个包装层工具,旨在简化复杂游戏环境中的强化学习开发。它支持原生PyTorch网络和简短的环境绑定,自动处理大部分复杂操作。该工具提供优化的LSTM支持、性能指标、本地仪表板、异步环境采样和检查点等功能,为强化学习研究提供全面解决方案。
DQN-Atari-Agents - 丰富DQN算法库,实现模块化训练与高效并行
AtariDDQNDQNGithubPythonRainbow开源项目
该项目提供了多种DQN算法的模块化训练方法,支持从原始像素或内存数据进行训练,并提高了训练速度。可选版本包括DDQN、Dueling DDQN等,可以通过组合Noisy layer、PER、多步目标等扩展为Rainbow算法。项目详细介绍了各类算法的使用方法及其在Atari和CartPole环境中的性能表现,适合用于研究和项目应用。
rl-baselines-zoo - 一站式强化学习训练与优化集成环境
GithubRL Baselines ZooStable-Baselines3开源项目强化学习训练代理超参数调优
RL Baselines Zoo提供一个多元化的强化学习代理集合,支持用户通过简易界面进行代理训练和算法评测。项目含多个环境和算法,带有经过优化的默认超参数,适用于教育和研究用途。注意:此库已停止维护,建议使用更新的RL-Baselines3 Zoo版本。
stable-baselines3-contrib - 实验性强化学习算法和工具
GithubGym WrappersStable-Baselines3rl算法sb3-contrib开源项目文档
提供最新的实验性强化学习算法和工具,保持稳定基线风格和文档,适用于更广泛的实际应用需求。包括增强随机搜索(ARS)和量化回归DQN(QR-DQN)等算法,以及适用于Gym环境的包装器。适合需要超越主存储库限制且仍需高可靠性的用户。
dreamerv3-torch - DreamerV3算法的PyTorch实现 跨领域强化学习新突破
DreamerV3Github世界模型人工智能开源项目强化学习深度学习
dreamerv3-torch是DreamerV3算法的PyTorch实现。该项目提供了详细的安装和使用说明,支持DMC、Atari、Crafter和Minecraft等多种基准测试环境。DreamerV3作为一种可扩展的强化学习算法,能在多个领域中以固定超参数实现优异性能。该实现参考了多个知名强化学习项目,为研究人员和开发者提供了实用的工具。
rl-plotter - 绘制强化学习训练曲线的工具
Githubrl-plotter学习曲线开源项目强化学习数据可视化日志记录器
rl-plotter 是一个简单的工具,可以轻松绘制强化学习训练曲线。支持自定义记录器、多实验绘图和多种绘图样式,兼容 OpenAI-baseline 和 OpenAI-spinningup。用户可以通过命令行方式绘制结果,并对图表进行个性化设置,如平均分组和阴影标准偏差。适用于研究人员和开发者追踪和可视化强化学习训练过程,提升工作效率和结果质量。
Gymnasium-Robotics - 基于Gymnasium和MuJoCo的强化学习机器人环境库
GithubGymnasiumMuJoCoPython开源项目强化学习机器人环境
Gymnasium-Robotics是一个强化学习机器人环境库,基于Gymnasium API和MuJoCo物理引擎开发。它提供多种机器人环境,包括Fetch机械臂、Shadow灵巧手等,并支持多目标API。该项目还集成了D4RL环境,如迷宫导航和Adroit机械臂。Gymnasium-Robotics为研究人员提供丰富的机器人操作任务,有助于开发和测试强化学习算法。
awesome-exploration-rl - 强化学习探索策略全面指南
Github实验开源项目强化学习探索方法环境算法
该项目聚焦强化学习探索方法,提供最新研究论文、分类体系和可视化案例。涵盖经典和前沿探索策略,持续追踪领域进展。对研究人员和实践者而言是宝贵参考,可用于研究探索-利用权衡或解决具体挑战。项目内容全面且定期更新,是强化学习探索领域的重要资源库。
RLHF-Reward-Modeling - 训练 RLHF 奖励模型的配方
ArmoRMBradley-Terry Reward ModelGithubRLHFRewardBenchpair-preference model开源项目
该项目专注于通过顺序拒绝采样微调和迭代DPO方法进行奖励和偏好模型训练,提供包括ArmoRM、Pair Preference Model和Bradley-Terry Reward Model在内的多种开源模型,并在RewardBench排行榜中表现显著。项目内容涵盖奖励建模、模型架构、数据集准备和评估结果,适用于基于DRL的RLHF及多项学术研究。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号