Project Icon

HandyRL

高效实用的分布式强化学习框架

HandyRL是一个基于Python和PyTorch的分布式强化学习框架,已在Kaggle竞赛中取得优异成绩。它采用离线策略修正的策略梯度算法和学习者-工作者架构,支持自定义环境和大规模训练。HandyRL的高并行能力和实用性使其在竞争性游戏AI开发中表现出色,能够快速训练出强大的AI模型。

crewAI - 提升AI代理合作效率的前沿框架
AI代理GithubcrewAI任务管理多代理系统开源开源项目热门
crewAI是一款尖端的框架,专为编排角色扮演的自治AI代理而设计。通过促进协同智能,crewAI赋能代理以无缝协作,共同应对复杂任务。该平台支持自定义代理角色、目标和工具,提供灵活的任务管理,并支持顺序和分层处理流程。适用于构建智能助手平台、自动化客户服务团队或多代理研究团队。
PPO-PyTorch - 使用PyTorch实现的简易PPO算法工具
GithubOpenAI gymPPO-PyTorchProximal Policy Optimization开源项目强化学习超参数调整
该项目提供了一个基于PyTorch的简易PPO算法实现,适用于OpenAI Gym环境,帮助初学者理解PPO。更新内容包括整合离散和连续算法,并引入了线性衰减机制。用户可以通过PPO_colab.ipynb在Google Colab中便捷地训练、测试和绘制图表。项目支持单线程执行,并提供日志记录、可视化和动画生成工具。
Hypernets - 自动机器学习通用框架 支持多种算法与优化技术
AutoMLGithubHypernets开源项目机器学习神经架构搜索超参数优化
Hypernets作为一个通用AutoML框架,能够为多种机器学习框架和库提供自动优化工具。它不仅支持TensorFlow、Keras、PyTorch等深度学习框架,还兼容scikit-learn、LightGBM、XGBoost等机器学习库。该框架集成了多种先进的单目标和多目标优化算法,并引入抽象搜索空间表示,满足超参数优化和神经架构搜索的需求,从而适应各类自动机器学习场景。
Safe-Policy-Optimization - 安全强化学习的全面算法基准平台
GithubPKU-AlignmentSafe-Policy-OptimizationSafety-Gymnasium安全强化学习开源项目算法基准
Safe-Policy-Optimization为安全强化学习(Safe RL)提供了全面的算法基准平台。该项目整合了多种算法和环境,支持单智能体和多智能体任务,具备正确性、可扩展性、日志记录和可视化等特性。通过统一的接口和详细文档,Safe-Policy-Optimization简化了安全RL算法的评估和比较流程,为研究人员提供了强大的实验工具。
RL-Theory-book - 强化学习理论与算法全面指南
Github人工智能开源项目强化学习深度学习理论算法
该书全面介绍强化学习理论,涵盖从基础到前沿的多个主题。内容包括元启发式方法、经典理论、基于价值和策略的方法、连续控制和基于模型的方法等。同时探讨模仿学习、内在动机和多任务学习等新兴领域。书中系统阐述理论基础和算法洞察,适合强化学习研究者和实践者参考。
warp-drive - GPU驱动的高效多智能体强化学习框架
GPU加速GithubWarpDrive多智能体并行计算开源项目深度强化学习
WarpDrive是一款开源的强化学习框架,专为GPU环境优化。它支持单GPU或多GPU上的端到端多智能体强化学习,通过充分利用GPU并行计算能力,显著提升训练速度。WarpDrive通过减少CPU和GPU间的数据传输,并在多智能体和多环境副本间并行运行模拟,大幅提高了计算效率。这使得同时运行海量并发模拟成为可能,实现了比传统CPU方案高出百倍的训练吞吐量。
tinyzero - 简易强化学习框架 快速训练类AlphaZero智能体
AlphaZeroGithub开源项目强化学习环境模拟神经网络蒙特卡洛树搜索
tinyzero是一个简易的强化学习框架,用于在任意环境中训练类AlphaZero的智能体。该框架提供简单接口实现新环境、模型和智能体,支持多种游戏类型。tinyzero采用Monte Carlo树搜索和深度学习技术,可在Google Colab上快速部署,适合研究人员和爱好者探索AI在各类任务中的应用。
dreamerv3 - 多领域任务的通用强化学习算法
AI训练DreamerV3Github世界模型开源项目强化学习性能优化
DreamerV3是一种创新的强化学习算法,通过世界模型实现多领域任务掌控。其特点是使用固定超参数,具有卓越的稳健性和扩展性。随着模型规模增加,性能和数据效率同步提升。该开源项目提供完整实现,包含训练脚本和使用指南,为研究人员和开发者提供了探索先进强化学习技术的平台。
dopamine - 用于快速原型设计的强化学习研究框架
DQNDopamineGithubJAXTensorflow开源项目强化学习
Dopamine是一个用于快速原型设计强化学习算法的研究框架,旨在便于用户进行自由实验。其设计原则包括易于实验、灵活开发、紧凑可靠和结果可重复。支持的算法有DQN、C51、Rainbow、IQN和SAC,主要实现于jax。Dopamine提供了Docker容器及源码安装方法,适用于Atari和Mujoco环境,并推荐使用虚拟环境。更多信息请参阅官方文档。
envpool - 高性能并行强化学习环境执行引擎
EnvPoolGithub并行处理开源项目强化学习环境仿真高性能计算
EnvPool是一款基于C++的高性能并行强化学习环境引擎。它支持Atari、Mujoco等多种环境,提供同步和异步执行模式,适用于单玩家和多玩家场景。EnvPool易于集成新环境,在高端硬件上可达到每秒100万Atari帧或300万Mujoco步骤的模拟速度,比传统Python子进程方法快约20倍。作为通用解决方案,EnvPool可显著加速各类强化学习环境的并行化执行。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号