Project Icon

multispectral-object-detection

多光谱图像融合的高效目标检测方法

该项目提出了Cross-Modality Fusion Transformer (CFT)多光谱目标检测方法,利用Transformer架构融合RGB和热红外图像信息。CFT在FLIR、LLVIP等数据集上取得了优秀的检测结果,尤其在夜间场景表现突出。这为多光谱目标检测提供了一种新的解决方案。

Transformer-in-Vision - 深入探索Transformer在计算机视觉领域的最新研究与资源
AI模型ChatGPTGithubTransformer-in-Vision多模态开源项目计算机视觉
本页面收录并介绍了最新的基于Transformer的计算机视觉研究和相关资源,内容涵盖机器人应用、视频生成、文本-图像检索、多模态预训练模型等领域。用户可访问开源代码和论文链接,如ChatGPT在机器人领域的应用、DIFFUSIONDB、LAION-5B、LAVIS、Imagen Video和Phenaki等。页面会不定期更新,提供Transformer在视觉领域应用的全面信息和资源汇总。
tensorflow-yolov3 - 使用TensorFlow 2.0实现的YOLOv3目标检测教程
COCOGithubTensorFlow 2.0VOCYOLOv3开源项目目标检测
本文介绍了使用TensorFlow 2.0实现YOLOv3目标检测的方法,包括快速入门、训练自定义数据集和在VOC数据集上的评估。提供详细的代码示例和步骤说明,帮助开发者轻松训练和应用目标检测模型。文中附有中文博客链接,提供更多学习资源。
yolov5-face - 基于YOLOv5框架的实时高精度人脸检测
BlazeFaceGithubMulti-Task-FacialTensorRTYOLOv5-facencnn-android-yolov8-face开源项目
基于YOLOv5框架的实时高精度人脸检测。该项目展示了不同版本(包括YOLOv5、YOLOv7、YOLOv8)在人脸检测中的性能表现,不同难度和硬件环境下的测试结果。提供了多种开源演示和预训练模型下载链接,支持多个平台如TensorRT、Android、OpenCV等。详细的训练和评估指南帮助用户在WIDERFace数据集上进行测试和验证。
EFG - 高效灵活的深度学习框架支持多项计算机视觉任务
3D目标检测EFGGithub开源项目深度学习框架目标跟踪计算机视觉
EFG是一个高效、灵活且通用的深度学习框架,采用最小化设计。该框架支持2D和3D目标检测、全景分割等多种计算机视觉任务,并在Waymo和nuScenes等数据集上展现优异性能。EFG集成了多个最新研究成果,如TrajectoryFormer和ConQueR,为3D目标检测和跟踪领域提供创新解决方案。研究人员可利用EFG的项目模板探索各种研究主题。
Multi-Task-Transformer - 场景理解多任务变压器模型 TaskPrompter和InvPT
GithubTransformer场景理解多任务学习开源项目深度学习计算机视觉
Multi-Task-Transformer项目提供两种场景理解多任务变压器模型:TaskPrompter和InvPT。TaskPrompter利用空间-通道多任务提示进行密集场景理解,InvPT采用倒金字塔架构。这些模型在单目深度估计和3D目标检测等任务中表现出色,并在ICLR2023和ECCV2022会议上发表。项目开源代码和预训练模型,支持多种计算机视觉应用。
omdet-turbo-swin-tiny-hf - 实时开放词汇目标检测模型 支持批量多任务处理
GithubHuggingfaceOmDet-Turbo图像识别开源项目机器学习模型目标检测零样本分类
这是一款基于Transformer的开放词汇目标检测模型。它支持零样本检测,能够识别指定的任意类别目标。该模型的特色在于支持批量处理多张图像,允许为每张图像设置不同的检测类别和任务描述。通过简洁的API接口,该模型可以方便地集成到各种计算机视觉应用中,实现高效的实时目标检测。
rtdetr_r101vd_coco_o365 - 实时目标检测革新者RT-DETR超越传统性能表现
GithubHuggingfaceRT-DETR开源项目模型模型训练深度学习目标检测计算机视觉
RT-DETR通过混合编码器架构和不确定性最小化查询选择方法实现目标检测任务。在COCO数据集测试中,RT-DETR-R101版本达到56.2% AP精度,T4 GPU上处理速度为74 FPS。模型可通过调整解码器层数实现速度与精度的灵活平衡,为实时目标检测领域提供新的技术方案。
OmniFusion - 整合多模态数据的先进人工智能系统
GithubOmniFusion图像处理多模态AI模型开源项目深度学习自然语言处理
OmniFusion是一个整合多模态数据的人工智能系统,基于Mistral-7B核心和CLIP-ViT-L视觉编码器。通过创新的适配器机制,该系统能够处理图像等多种数据形式,在图像描述和视觉问答等任务中展现出优秀性能。OmniFusion由AIRI研究所FusionBrain团队与Sber AI合作开发,目前主要处理图像数据,未来计划扩展到音频等更多模态。
LeYOLO - 可扩展高效的目标检测CNN架构
COCO数据集GithubLeYOLO开源项目目标检测神经网络计算效率
LeYOLO是一种新型目标检测模型系列,通过创新的CNN架构设计实现了计算效率与准确性的优化平衡。该模型引入高效主干网络缩放、快速金字塔架构网络和解耦网络中的网络检测头,大幅降低计算负载。在COCO验证集上,LeYOLO-Small仅使用4.5 GFLOP就达到38.2%的mAP,比YOLOv9-Tiny减少42%计算量。LeYOLO系列具有强大可扩展性,适用于从超低计算需求(<1 GFLOP)到高效高性能(>4 GFLOPs)的多种场景。
detectron2 - Facebook开源的高性能目标检测和图像分割框架
Detectron2Github图像分割开源项目深度学习目标检测计算机视觉
Detectron2是Facebook AI Research开发的开源计算机视觉库,提供先进的目标检测和图像分割算法。它支持全景分割、Densepose和级联R-CNN等功能,可用于研究项目和生产应用。该库训练速度快,支持模型导出,并提供大量预训练模型。Detectron2为研究人员和开发者提供了强大而灵活的工具,推动计算机视觉技术的发展和应用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号