Project Icon

catch22

精选时间序列特征提取库

catch22是一个包含22个时间序列特征的开源库,由C语言编写,支持Python、R、Matlab和Julia等多种编程语言。这些特征是从7000多个候选中精选而来,在93个实际时间序列分类问题中表现优异。catch22提供了跨平台的安装方法和使用接口,包括各语言的原生版本和C编译版本。该工具主要用于高效提取时间序列的动态特征,适用于多种研究和应用场景。

awesome-time-series - 时间序列预测与分析的全面资源汇总
GithubTransformer图神经网络开源项目异常检测时间序列预测深度学习
本项目汇集了时间序列预测领域的最新论文、代码和相关资源。内容涵盖M4竞赛、Kaggle时间序列竞赛、学术研究、理论基础、实践工具和数据集等。为研究人员和从业者提供全面的参考资料,促进时间序列预测技术的深入研究与应用。
deeptime - Python时间序列分析与动态建模库
Githubdeeptime动力学模型开源库开源项目时间序列分析机器学习
deeptime是一个专注于时间序列数据分析的Python库,集成了多种动态模型估计工具。该库涵盖传统线性学习方法(如马尔可夫状态模型、隐马尔可夫模型和Koopman模型)及先进的核方法和深度学习技术。与scikit-learn兼容的同时,deeptime还提供了独特的Model类,用于分析热力学、动力学和其他动态特性。该库支持多平台安装,适用于各类时间序列数据研究。
dtaidistance - 快速时间序列距离计算库
DTWGithub动态时间规整开源项目时间序列聚类距离计算
dtaidistance是一个高效的时间序列距离计算Python库。它提供纯Python和优化的C实现,支持动态时间规整(DTW)等算法。该库与NumPy和Pandas兼容,避免了不必要的数据复制。支持多维时间序列、子序列搜索和聚类。dtaidistance为时间序列分析和机器学习提供了快速的距离计算工具,是处理时序数据的理想选择。
tslearn - Python时间序列分析机器学习库
GithubPython库tslearn开源项目数据预处理时间序列分析机器学习
tslearn是一个开源的Python库,专注于时间序列分析和机器学习。它提供数据预处理、分类、聚类、回归和多种距离度量方法。支持可变长度时间序列,兼容scikit-learn,包含UCR数据集和数据生成器。tslearn适用于需要进行时间序列分析的数据科学工作,支持超参数调优和管道等功能,为研究和实践提供全面工具支持。
microprediction - 多功能时间序列预测和优化开源工具集
Githubmicroprediction开源项目时间序列预测算法优化金融预测
microprediction是一个综合性开源项目集,专注于时间序列预测和优化。该项目提供多个Python库,包括humpDay、timemachines和precise,分别用于无导数优化器评估、增量时间序列预测和协方差估计。这些工具能帮助提高预测精度和模型性能。项目还包含丰富的基准测试和评估工具,便于比较不同方法的效果。适用于数据科学研究和实际应用场景。
ta-lib-python - 高效金融技术分析库 支持多种指标与图表识别
GithubPythonTA-Lib开源项目技术分析指标金融市场
TA-Lib Python是一个基于Cython的金融技术分析库,提供150多种市场技术指标和蜡烛图模式识别。性能优于原始SWIG接口,支持NumPy、Pandas和Polars等数据处理库。该库为金融分析软件开发者提供多种技术分析工具,可用于处理市场数据,计算移动平均线、MACD、RSI、布林带等指标。
statsforecast - 快速高效的统计时间序列预测工具
GithubStatsForecast开源项目性能优化时间序列预测统计模型自动模型
StatsForecast是一个专注于统计时间序列预测的Python库。它集成了多种常用模型如ARIMA、ETS等,并通过numba实现高性能计算。该库支持概率预测、外生变量处理和异常检测,可与Spark等大数据框架无缝对接。StatsForecast能高效处理大规模时间序列数据,适用于生产环境和基准测试。
Time-series-classification-and-clustering-with-Reservoir-Computing - 基于储层计算的时间序列分析框架
GithubReservoir Computing开源项目时间序列分类时间序列聚类机器学习神经网络
这个开源项目利用储层计算技术,实现了时间序列数据的分类、聚类和预测功能。它支持处理单变量和多变量时间序列,并提供了易用的Python库。项目包含多个功能模块、丰富的数据集和高级示例。其特有的储层模型空间表示方法在处理复杂时间序列任务时表现出色。
nolitsa - 全面的Python非线性时间序列分析库
GithubLyapunov指数NoLiTSAPython模块嵌入维度估计开源项目非线性时间序列分析
NoLiTSA是一个开源Python模块,专门用于非线性时间序列分析。它实现了多种标准算法,如嵌入延迟估计、维度估计、相关维数计算和最大Lyapunov指数估计。模块支持FT、AAFT和IAAFT替代数据生成,并提供噪声减少功能。NoLiTSA适用于复杂的时间序列分析任务,已在天体物理学和流体动力学研究中应用,为科研人员提供了可靠的分析工具。
tsa4 - 时间序列分析与应用的开源资源库
GithubPythonR语言astsa开源项目数据集时间序列分析
tsa4是一个综合性时间序列分析资源库,包含《Time Series Analysis and Its Applications》第四版的更新代码和astsa R包。项目提供errata列表、Python代码转换和数据集包,支持R和Python用户学习和应用时间序列分析。该资源库为研究者和实践者提供了丰富的工具和参考材料。详情请访问项目GitHub页面:https://github.com/nickpoison/tsa4
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号