Project Icon

continual-learning

PyTorch 在三种不同场景中实现各种持续学习方法

此项目实现了在增量学习场景中的PyTorch深度神经网络实验,支持学术设置下的分类问题,且可进行更加灵活的无任务增量学习实验。项目提供了演示脚本和详细的安装指导,适合多种经典方法的性能对比和自定义实验。

solo-learn - 使用自监督学习进行无监督视觉表征的方法与技巧
GithubPyTorch Lightningsolo-learn开源项目无监督自监督学习视觉表示学习
solo-learn库基于PyTorch Lightning,提供多种自监督方法用于无监督视觉表征学习。该库包含全面的训练技巧和多种数据处理、评估方式,以提高训练效果和可重复性。其主要特点有快速的数据处理、自定义模型检查点、线上和线下的K-NN评估。库内包含灵活的数据增强、可视化功能,并不断更新方法和改进教程,使模型训练和调试更加高效简便。
DeepLearningExamples - 优化深度学习训练和部署的最佳实践
CUDA-XDeep LearningGithubNGCNVIDIATensor Cores开源项目
提供最新的深度学习示例,使用NVIDIA CUDA-X软件栈在Volta、Turing和Ampere GPU上运行,确保最佳的可重复精度和性能。示例通过NGC容器注册表每月更新,包含最新的NVIDIA贡献和深度学习软件库,支持计算机视觉、自然语言处理、推荐系统、语音识别、文本到语音转换、图神经网络和时间序列预测模型。
PyTorch-Tutorial-2nd - 涵盖深度学习应用与推理部署的知识库
GithubPyTorch大语言模型开源项目深度学习自然语言处理计算机视觉
本书基于PyTorch,系统性涵盖深度学习的核心知识,包括计算机视觉、自然语言处理、大语言模型等实战案例,详解ONNX和TensorRT推理部署框架,为读者提供从基础到应用的完整指导,帮助快速掌握PyTorch并实现项目落地。适合AI自学者、产品经理及跨领域人士阅读。
pytorch-metric-learning - 高级度量学习工具库,适用于深度学习
GithubPyTorch Metric LearningTripletMarginLossloss函数嵌入开源项目模型训练
PyTorch Metric Learning提供多种损失函数、挖掘器和评估工具,支持自定义和无监督学习。该库适用于各种训练和测试需求,配有详细文档和示例,适合高效嵌入空间计算的应用场景。
CALM-pytorch - 组合式增强大型语言模型框架
CALMGithubLLM人工智能开源项目深度学习神经网络
CALM-pytorch是基于Google Deepmind研究的开源PyTorch实现,旨在通过组合多个专业LLM来增强大型语言模型的能力。该框架支持集成任意数量的增强型模型,提供灵活的连接配置和便捷的训练工具。CALM-pytorch可与多种Transformer架构兼容,包括视觉Transformer,为研究人员和开发者提供了一个强大的平台来探索和扩展LLM的潜力。不仅支持文本处理,还能整合视觉和音频模型,为多模态AI应用开发提供了强大支持。
lightly - 简单易用的自监督学习工具,支持自定义骨干模型和分布式训练
GithubLightlyPyTorch多模型支持开源项目自监督学习计算机视觉
这个开源项目提供简单易用的自监督学习工具,支持自定义骨干模型和分布式训练。通过模块化设计,用户可以自由调整损失函数和模型头。项目还提供商业版本,包含用于嵌入、分类、检测和分割任务的预训练模型。此外,平台集成了主动学习和数据策划功能,适用于大规模数据处理和强大算法的应用。
ai_projects - 多领域机器学习项目开源仓库
AI项目GitHubGithubMiguel Fierro开源项目机器学习深度学习
ai_projects是一个涵盖多个机器学习领域的开源项目仓库。内容包括CNN、转移学习、推荐系统和自然语言处理等主题。每个项目都配有Jupyter笔记本和相关博客文章,为开发者和研究者提供实践资源。仓库定期更新,展示AI技术在实际应用中的最新进展。
DeepLearningProject - 全面教程涵盖数据集创建与深度学习
GithubHarvard UniversityPyTorchPython开源项目机器学习深度学习
本教程详细介绍了从创建自定义数据集到应用传统和深度学习算法的完整机器学习管道。基于哈佛大学高级数据科学课程项目,内容更新为PyTorch版本,适合希望深入理解和实践机器学习的用户。
multimodal - PyTorch多模态模型开发框架
GithubPyTorchTorchMultimodal多模态模型开源项目机器学习深度学习
TorchMultimodal是基于PyTorch的多模态模型开发框架,提供模块化构建块和预训练模型,支持ALBEF、BLIP-2、CLIP等多种架构。该框架包含训练、微调和评估示例,可用于构建内容理解和生成模型。TorchMultimodal整合了PyTorch生态系统,便于研究人员复现和开发先进的多模态多任务模型。
d2l-pytorch - MXNet代码转换为PyTorch实现的指南
Dive Into Deep LearningGithubPyTorch卷积神经网络开源项目深度学习线性神经网络
本项目基于《Dive Into Deep Learning》书籍,将MXNet代码转换为PyTorch实现。内容包括安装指南、线性神经网络、多层感知器、卷积神经网络、现代卷积网络、循环神经网络和注意力机制等章节。提供详细教程和示例代码,适合使用PyTorch进行深度学习的开发者。建议克隆仓库或使用nbviewer查看notebook文件。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号