Project Icon

BasicTS

公平且标准的时间序列预测基准和工具包

BasicTS是一个开源的时间序列预测基准和工具包,支持空间-时间预测和长时间序列预测等任务。它提供统一标准的评估流程,实现对主流深度学习模型的公平对比。BasicTS还提供易用的接口,便于设计和评估新模型。该项目内置多个数据集和基线模型,支持多种计算设备,并有完善的日志系统。BasicTS致力于推动时间序列预测研究的发展。

PaddleTS - 基于飞桨的开源时序分析库 提供全面深度学习模型
GithubPaddlePaddlePaddleTSPython库开源项目时序建模深度学习
PaddleTS是基于飞桨框架的时序建模库,专注深度学习模型。它提供统一数据结构和基础功能封装,内置多种先进模型和数据转换工具。支持自动调优、第三方集成、GPU加速和集成学习。涵盖预测、表征、异常检测等任务,为时序分析提供全面解决方案。
gluonts - 基于深度学习的概率时间序列建模工具包
GithubGluonTSPython开源项目时间序列预测概率模型深度学习
GluonTS是一个基于Python的时间序列建模库,专注于采用深度学习方法进行概率预测。支持多种深度学习框架,包括PyTorch和MXNet,提供易于安装和使用的特性。适用于多种应用场景,如商业分析和数据科学。由一个积极的开源社区维护和发展。
tsai - 专注于时间序列分析的深度学习库,支持分类、回归和预测任务。
GithubPytorchdeep learningfastaitime seriestsai开源项目
tsai是基于Pytorch和fastai的开源深度学习库,专注时间序列分析,涵盖分类、回归和预测等任务。支持多种模型和数据集,并提供详尽的教程。适用于Pytorch 2.0,安装简便,适合开发和前沿研究。
tsfeatures - 高效提取时间序列特征的R工具包
GithubR包tsfeatures开源项目数据分析时间序列特征提取
tsfeatures是一个R包,专门用于从时间序列数据中提取多种特征。它能分析趋势、季节性、线性度等,并处理不同频率和周期的时间序列。该包输出易于理解的特征指标,适用于时间序列分析、预测和分类等领域。tsfeatures可通过CRAN安装,支持多种时间序列特征提取方法,使用简单灵活。
TSDB - 高效便捷的时间序列数据集加载库
GithubPyPOTSTSDB开源工具开源项目数据挖掘时间序列数据集
TSDB是一个时间序列数据集加载库,支持172个公开数据集的一键加载。该工具简化了研究人员和工程师的数据获取流程,使他们能专注于数据处理。TSDB具备数据下载、加载和缓存管理功能,并支持缓存目录迁移。作为PyPOTS工具箱的组成部分,TSDB为时间序列数据挖掘提供了基础支持。
uni2ts - 时间序列预测Transformer模型的统一训练框架
GithubPyTorchTransformerUni2TS开源项目时间序列预测预训练模型
Uni2TS是一个基于PyTorch的开源库,专门用于时间序列Transformer的研究和应用。它提供了统一的大规模预训练解决方案,支持微调、推理和评估。该库集成了零样本预测、自定义数据集处理和全面评估功能,并提供简化的命令行界面。Uni2TS旨在推动时间序列预测领域的进展,适用于研究和实际应用场景。
modeltime - R语言时间序列预测框架 整合机器学习与传统方法
GithubR语言modeltime工作流开源项目时间序列预测机器学习
modeltime是R语言的时间序列预测框架,简化了预测工作流程,整合机器学习和传统分析方法。支持ARIMA、ETS、Prophet等模型,可与tidymodels生态系统集成。通过6步流程,用户可快速构建、评估和部署预测模型,适用于高性能时间序列分析。框架还包括modeltime.h2o用于AutoML、modeltime.gluonts用于深度学习,以及modeltime.ensemble用于集成预测。这些组件共同构成了一个全面的时间序列分析生态系统,为不同规模和复杂度的预测任务提供解决方案。
LLM4TS - 大型语言模型和基础模型在时间序列分析中的最新进展
AIGithubLLM基础模型开源项目时间序列预训练
LLM4TS项目整理了时间序列分析领域中大型语言模型和基础模型的最新研究。主要内容包括时间序列LLM的进展、专用基础模型、数据集和重要发现。此外,项目还涵盖了预训练时间序列模型和LLM在推荐系统等相关领域的应用,为研究和实践提供了丰富的资源。
awesome-time-series - 时间序列预测与分析的全面资源汇总
GithubTransformer图神经网络开源项目异常检测时间序列预测深度学习
本项目汇集了时间序列预测领域的最新论文、代码和相关资源。内容涵盖M4竞赛、Kaggle时间序列竞赛、学术研究、理论基础、实践工具和数据集等。为研究人员和从业者提供全面的参考资料,促进时间序列预测技术的深入研究与应用。
tsfeatures - 时间序列特征提取的Python工具库
GithubPythontsfeatures开源项目数据分析时间序列特征提取
tsfeatures是一个Python库,用于计算时间序列数据的多种特征。作为R语言tsfeatures包的Python实现,它提供了自相关、异方差、熵、平稳性等统计指标的计算功能。该库支持自定义特征函数和处理不同频率的时间序列数据,并允许与R版本结果进行对比。tsfeatures适用于需要进行时间序列分析和建模的数据处理场景。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号