Project Icon

BasicTS

公平且标准的时间序列预测基准和工具包

BasicTS是一个开源的时间序列预测基准和工具包,支持空间-时间预测和长时间序列预测等任务。它提供统一标准的评估流程,实现对主流深度学习模型的公平对比。BasicTS还提供易用的接口,便于设计和评估新模型。该项目内置多个数据集和基线模型,支持多种计算设备,并有完善的日志系统。BasicTS致力于推动时间序列预测研究的发展。

Awesome-SSL4TS - 自监督学习在时间序列分析中的应用资源
Github对比学习开源项目时间序列生成式方法自监督学习表示学习
这个项目汇总了时间序列数据自监督学习的最新研究资源,包括相关论文、代码和数据集。资源分为生成式和对比式两大类方法,涵盖了自回归预测、自编码重构、扩散模型生成、采样对比、预测对比和增强对比等技术。该资源列表为时间序列自监督学习研究提供了全面的参考材料。
sktime - 多功能时间序列分析和预测库
GithubPython库sktime开源项目时间序列分析机器学习统一接口
sktime是一个开源的Python时间序列分析库,为多种时间序列学习任务提供统一接口。它支持时间序列分类、回归、聚类、标注和预测等功能,并提供专门的时间序列算法和兼容scikit-learn的工具。sktime还整合了多个相关库的接口,便于用户在不同时间序列任务间迁移算法。
statsforecast - 快速高效的统计时间序列预测工具
GithubStatsForecast开源项目性能优化时间序列预测统计模型自动模型
StatsForecast是一个专注于统计时间序列预测的Python库。它集成了多种常用模型如ARIMA、ETS等,并通过numba实现高性能计算。该库支持概率预测、外生变量处理和异常检测,可与Spark等大数据框架无缝对接。StatsForecast能高效处理大规模时间序列数据,适用于生产环境和基准测试。
awesome-time-series - 时间序列分析资源及工具集锦
GithubPython可视化开源项目数据分析时间序列机器学习
该项目汇集了丰富的时间序列和序列数据处理资源。涵盖Python、R、Java等多种语言的工具库,内容包括特征工程、分割、增强和可视化等方面。同时收录了相关数据库、标注工具、学术论文、开源模型、书籍和课程,为时间序列分析提供全面参考。
awesome-AI-for-time-series-papers - 时间序列分析领域的人工智能前沿研究与资源集锦
AIGithub开源项目数据挖掘时间序列机器学习深度学习
这是一个全面收录人工智能在时间序列分析(AI4TS)领域最新研究成果的资源库。项目汇集了顶级AI会议和期刊发表的论文、教程和综述,涉及时间序列、时空数据、事件数据等多个方面。资源库实时更新NeurIPS、ICML、KDD等重要会议的相关论文,为AI4TS领域的研究人员和工程师提供了丰富且及时的学术参考。
chronos-t5-mini - 开源时间序列预测模型实现高效概率预测
Chronos-T5GithubHuggingface开源项目时间序列预测概率预测模型语言模型预训练模型
Chronos-T5-Mini是基于T5架构开发的时间序列预测模型,参数规模为2000万。模型通过将时间序列转换为token序列进行训练,采用多轨迹采样方式实现概率预测。模型在公开时间序列数据集和高斯过程生成的合成数据上完成预训练,采用4096大小的词汇表,相比原始T5模型显著降低了参数量同时保持了预测性能。
chronos-t5-tiny - 轻量级时间序列预测模型 基于T5架构设计
Chronos-T5GithubHuggingface开源项目时间序列预测概率预测模型语言模型架构预训练模型
Chronos-T5-Tiny是一款轻量级时间序列预测模型,基于T5架构设计。该模型将时间序列转换为token序列进行训练,能够生成概率性预测并支持多轨迹采样。与原始T5相比,Chronos-T5-Tiny仅使用4096个不同token,参数量减少至800万,更加精简高效。研究人员和开发者可通过简洁的Python接口快速应用此模型进行时间序列分析。
tsflex - 高效灵活的时间序列处理和特征提取Python工具包
GithubPython库tsflex开源项目数据分析时间序列处理特征提取
tsflex是一个Python工具包,用于时间序列处理和特征提取。它支持多变量、多模态时间序列数据,并可与多种处理和特征提取库集成。tsflex采用基于视图的操作,实现低内存占用和快速执行。该工具包提供直观的API,对序列数据几乎没有假设,能处理异步数据。此外,tsflex还具备特征选择、执行时间记录和序列化等高级功能。
Rbeast - 贝叶斯时间序列分解与变点检测工具
BEASTGithub变点检测开源项目时间序列分解贝叶斯算法趋势分析
Rbeast是一款开源的贝叶斯时间序列分析工具,主要用于检测时间序列数据中的变点、趋势和季节性变化。该工具采用贝叶斯模型平均方法,可分解时间序列中的突变、趋势和周期变化。Rbeast适用于遥感、金融、公共卫生等多个领域的实值时间序列分析。它支持R、Python、Matlab和Octave等多种编程环境,安装和使用都较为简便。相比同类算法,Rbeast具有较快的计算速度。
Nonstationary_Transformers - 创新时间序列预测方法应对非平稳数据
GithubNon-stationary Transformers开源项目时间序列预测模型架构注意力机制深度学习
Non-stationary Transformers项目开发了新型时间序列预测方法,采用系列平稳化和去平稳注意力机制处理非平稳数据。该方法在多个基准数据集上展现出优异性能,并能有效提升现有注意力模型的预测效果。项目开源了完整代码和实验脚本,为时间序列预测研究和应用提供了重要参考。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号