Project Icon

kompute

通用GPU计算框架,支持AMD、Qualcomm和NVIDIA显卡

快速、移动友好且异步的通用GPU计算框架,专为高级GPU加速优化。支持Python和C++并兼容Vulkan,适用于机器学习、移动开发和游戏开发。由Linux基金会支持,社区活跃,示例丰富。

exllama - 为现代GPU优化的快速内存高效Llama实现
AI模型CUDAExLlamaGPU加速Github开源项目深度学习
ExLlama是一个基于Python/C++/CUDA的独立实现,针对4位GPTQ权重进行了优化,旨在提高现代GPU上的运行速度和内存效率。该项目支持NVIDIA 30系列及更新的GPU,可处理Llama、Koala和WizardLM等多种大型语言模型。ExLlama具备基准测试、聊天机器人示例和Web界面等功能,同时支持Docker部署。尽管仍在开发中,项目已展现出卓越的性能和效率。
awesome-tensor-compilers - 编译深度学习与张量计算的开源项目与研究综述
GPU优化GithubTensor Computation开源项目机器学习编译器深度学习编译器自动调优
本页面汇集了关于张量计算与深度学习的优质开源编译器项目和研究论文,包括编译器与中间表示(IR)设计、自动调优与自动调度、CPU和GPU优化、NPU优化、图级优化、动态模型、图神经网络、分布式计算、量化方法、稀疏计算、程序改写以及验证与测试等领域的内容。页面还提供相关教程资源,帮助开发者和研究人员优化机器学习和深度学习的编译性能。
ZLUDA - 英特尔GPU上的高性能CUDA兼容层
CUDAGithubIntel GPUZLUDA开源项目性能替代方案
ZLUDA项目为英特尔GPU提供CUDA兼容层,使未修改的CUDA应用能在英特尔显卡上运行。它支持英特尔UHD集成显卡和即将推出的Xe系列GPU。作为概念验证,ZLUDA目前主要适用于GeekBench等程序,性能与OpenCL代码相近。该项目无需代码移植即可使现有应用在英特尔GPU上运行,但目前仍处于早期开发阶段。
kitty - 快速功能丰富的跨平台开源GPU驱动终端模拟器
GPU加速Githubkitty开源软件开源项目终端模拟器跨平台
kitty是一个开源的GPU驱动终端模拟器,特点是速度快、功能丰富且支持跨平台使用。项目提供详细文档,并在GitHub和Reddit上有活跃的社区支持。kitty持续更新维护,在多个软件仓库中保持良好的打包状态,确保了稳定性和广泛的可用性。这款终端模拟器支持Unicode、真彩色显示和自定义快捷键等现代化功能。
lectures - GPU并行计算技术与高性能编程系列讲座
CUDAGPU编程GithubPyTorch并行计算开源项目深度学习
讲座系列涉及CUDA、PyTorch优化、量化技术和稀疏计算等GPU编程前沿话题。由行业专家授课,内容包括性能分析、内存架构和优化方法。结合理论和实践,帮助学习者掌握并行计算技能,增强GPU编程水平。面向对GPU加速和深度学习优化感兴趣的技术人员。
covalent - 跨平台执行AI、ML和科研代码的统一框架
CovalentGithub云计算人工智能开源项目机器学习科学研究
Covalent是一个面向AI/ML工程师、开发者和研究人员的Python库,用于简化跨平台计算任务的执行。通过更改单行代码,用户可在云平台或本地集群上运行LLM、生成式AI和科学研究等任务。该库抽象了基础设施管理,实现无服务器化,并提供实时监控。Covalent支持AWS、Azure、GCP和SLURM等多种执行环境,为用户提供统一的界面和灵活的资源管理。
bitsandbytes - 高效CUDA优化库 支持多位量化和矩阵运算
CUDAGithubbitsandbytes优化器开源项目硬件后端量化
bitsandbytes是一个轻量级Python库,为CUDA自定义函数提供封装。该库主要提供8位优化器、矩阵乘法(LLM.int8())以及8位和4位量化功能。通过bitsandbytes.nn模块实现多位线性层,bitsandbytes.optim模块提供优化器。目前正在拓展对更多硬件后端的支持,包括Intel CPU+GPU、AMD GPU和Apple Silicon,Windows平台的支持也在开发中。
pytorch - 能GPU加速的Python深度学习平台
GPU加速PyTorch深度学习神经网络
PyTorch是一个开源的提供强大GPU加速的张量计算和深度神经网络平台,基于动态autograd系统设计。它不仅支持广泛的科学计算需求,易于使用和扩展,还可以与Python的主流科学包如NumPy、SciPy无缝集成,是进行深度学习和AI研究的理想工具。
taichi - Python嵌入式高性能并行编程语言
GPU加速GithubPython嵌入Taichi Lang并行编程开源项目高性能计算
Taichi是一款嵌入Python的开源并行编程语言,专注高性能数值计算。它利用LLVM等即时编译器将Python代码转译为GPU或CPU指令,支持CUDA、Vulkan等多种后端。Taichi以其灵活性、高性能和跨平台特性,广泛应用于物理模拟、数值分析、AR和AI等领域。
swiftshader - 基于CPU的高性能Vulkan 1.3实现
CPU渲染GithubSwiftShaderVulkan图形API开源项目跨平台
SwiftShader是一个基于CPU的高性能Vulkan 1.3图形API实现,为3D图形提供硬件独立性。支持Windows、Linux和macOS等多平台,可替代传统图形驱动。通过软件实现Vulkan API,SwiftShader使应用程序无需依赖特定硬件即可运行高级图形功能,为开发者和用户提供更大灵活性。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号