Project Icon

MixFormer

基于迭代混合注意力的端到端目标跟踪框架

MixFormer是一种创新的端到端目标跟踪框架,采用目标-搜索混合注意力(MAM)骨干网络和角点头部结构,实现了无需显式集成模块的紧凑跟踪流程。这种无后处理方法在LaSOT、GOT-10K和TrackingNet等多个基准测试中表现卓越,并在VOT2020上取得0.584的EAO成绩。项目开源了代码、模型和原始结果,为目标跟踪研究领域提供了宝贵资源。

MotionLLM - 融合视频和动作数据的人类行为理解先进AI模型
GithubMotionLLM人工智能人类行为理解多模态学习大语言模型开源项目
MotionLLM是一个人类行为理解框架,通过融合视频和动作序列数据来分析人类行为。该项目采用统一的视频-动作训练策略,结合粗粒度视频-文本和细粒度动作-文本数据,以获得深入的时空洞察。项目还包括MoVid数据集和MoVid-Bench评估工具,用于研究和评估人类行为理解。MotionLLM在行为描述、时空理解和推理方面展现出优越性能,为人机交互和行为分析研究提供了新的方向。
flowmap - 基于梯度下降的相机姿态、内参和深度优化技术
FlowMapGithub光流开源项目深度学习相机姿态估计计算机视觉
FlowMap是一种创新的相机姿态、内参和深度估计技术,通过梯度下降优化获得高质量结果。该开源项目提供完整代码实现、预训练模型和评估数据集,支持多种数据集并提供丰富的实验配置。FlowMap在多个基准测试中表现出色,为计算机视觉和3D重建研究提供了有力支持。
Realtime_Multi-Person_Pose_Estimation - 实时多人人体姿态估计的开源实现
CVPRGithubMSCOCO Keypoints ChallengeOpenPosePart Affinity FieldsRealtime Multi-Person Pose Estimation开源项目
该项目展示了一种无需人体检测器的实时多人人体姿态估计方法,曾获2016年MSCOCO关键点挑战赛冠军等多个奖项。项目提供了C++、TensorFlow、Pytorch等多种实现版本,适用于不同应用场景。页面还包括详细的测试与训练步骤,以及相关的代码库和资源链接,适合研究人员和开发者使用。
yolov5-deepsort-tensorrt - 基于YOLOv5和DeepSORT的Jetson设备目标跟踪系统
DeepSortGithubJetsonTensorRTYolov5开源项目目标跟踪
这个项目是YOLOv5和DeepSORT算法在Jetson设备上的C++实现,针对Jetson Xavier NX和Jetson Nano进行了优化。系统能够高效跟踪多个人头目标,在Jetson Xavier NX上处理70多个目标时可达到10 FPS。项目包含环境配置、模型生成和运行指南,支持自定义模型,并提供了不同YOLOv5版本的兼容性说明。适合需要在边缘设备上进行高性能目标跟踪的应用场景。
equiformer-pytorch - SE(3)/E(3)等变注意力网络的高效PyTorch实现
AIEquiformerGATv2GithubSE3 Transformers开源项目深度学习
Equiformer-pytorch是一个基于PyTorch的SE(3)/E(3)等变注意力网络实现。该项目采用MLP注意力机制和非线性消息传递,实现了最先进的性能。它支持可逆网络以提高内存效率,并集成了最新的球谐函数稀疏化技术,大幅提升计算效率。Equiformer-pytorch还提供边缘和邻接矩阵支持,适用于蛋白质折叠等各种3D原子图任务。
SpaTracker - 将2D像素的3D空间运动轨迹可视化
3D追踪CVPR 2024GithubSpatialTracker像素追踪开源项目计算机视觉
SpaTracker是一个计算机视觉项目,可在3D空间中追踪视频中任意2D像素的运动轨迹。该项目支持RGB和RGBD视频输入,采用单目深度估计技术实现像素级追踪。SpaTracker提供演示代码和预训练模型,可视化效果优秀。这一工具可应用于动作分析和视觉特效等领域。该项目在CVPR 2024被评为亮点论文,体现了其在3D视觉追踪领域的创新性。
mmyolo - YOLO算法与实时对象识别工具包
GithubMMYOLOOpenMMLabYOLO系列算法实例分割开源项目目标检测
MMYOLO是一个基于PyTorch和MMDetection的开源工具包,专注于YOLO系列算法,适用于对象检测和旋转对象检测任务。该项目提供统一的基准测试、详细文档和模块化设计,便于用户构建和扩展模型。支持YOLOv5实例分割和YOLOX-Pose等功能,显著提升训练速度,并在RTMDet模型上实现了先进的性能。
oneformer_coco_swin_large - 单一模型实现多任务图像分割
GithubHuggingfaceOneFormer图像分割多任务模型实例分割开源项目模型语义分割
OneFormer COCO Swin Large是一款基于COCO数据集训练的多任务图像分割模型。它采用单一架构,通过一次训练就能在语义、实例和全景分割任务中表现出色。模型利用任务令牌技术实现训练引导和动态推理,提供了高效的图像分割方案。此外,它还提供了便捷的API接口,适合各类研究和开发需求。
first-order-model - First Order Motion Model:图像动画的高效解决方案
DockerFirst Order Motion ModelGithubPython图像动画开源项目数据集
First Order Motion Model项目提供了一种先进的图像动画运动模型,通过驾驶视频和源图像生成逼真的动画序列。支持包括VoxCeleb、Fashion和MGIF在内的多种数据集,提供详细的安装和使用指南。项目支持Python和Docker,确保了环境兼容性,还提供Colab和Kaggle的在线演示。此外,该项目还具备面部交换功能,适用于监督和非监督的视频编辑任务。
3D-deformable-attention - 3D可变形注意力技术提升自动驾驶物体检测精度
3D目标检测BEVFormerDFA3DGithub开源项目深度估计特征提升
3D-deformable-attention项目提出了3D可变形注意力(DFA3D)操作符,用于2D到3D特征提升。该方法首先利用深度估计将2D特征扩展到3D空间,再通过DFA3D聚合3D特征。这种方法缓解了深度歧义问题,并支持逐层特征细化。在多个基准测试中,DFA3D平均提高1.41 mAP,高质量深度信息下最高提升15.1 mAP。研究结果显示DFA3D在自动驾驶3D目标检测等任务中具有较大潜力。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号