Project Icon

Vehicle-Detection

深度学习与YOLO算法实现的车辆检测系统

Vehicle-Detection项目结合深度学习和YOLO算法实现车辆检测。项目提供完整工作流程,涵盖数据集准备、模型训练和测试。采用YOLOv5预训练模型微调,集成wandb工具监控性能。项目包含自定义车辆数据集,并提供详细的安装、训练和测试指南。

yolov5m-license-plate - 车牌检测的YOLOv5模型支持Pytorch适用于多种视觉任务
GithubHuggingfacePyTorchYOLOv5开源项目模型深度学习目标检测车牌识别
YOLOv5m-license-plate项目提供基于YOLOv5技术的车牌检测模型,利用Pytorch进行对象检测,适用于多种计算机视觉任务。开发者可运用简单的Python代码实现精准车牌识别,并支持通过自定义数据集进行微调以提升效果。在keremberke数据集上的精度高达0.988,适合快速、可靠的车牌检测应用。访问项目主页获取更多信息和下载。
yolov5n-license-plate - 基于YOLOv5的轻量级车牌检测模型
GithubHuggingfacePyTorchYOLOv5开源项目机器视觉模型目标检测车牌识别
基于YOLOv5架构开发的轻量级车牌检测模型,通过pip快速安装部署。模型支持自定义参数配置,包括置信度阈值和IoU阈值调节,并集成了数据增强功能。提供完整的模型加载、推理和微调接口,可用于实际车牌检测场景,在验证集上展现出较高的检测精度。
yolos-small-finetuned-license-plate-detection - 车牌识别微调模型提升物体检测能力
GithubHuggingfaceYOLOS开源项目模型模型微调目标检测视觉Transformer车牌识别
YOLOS小型模型经过微调适用于车牌检测,使用5200张图片进行训练,并在380张图片上验证,实现49.0的平均精度。模型支持PyTorch平台,并通过Python代码执行对象检测与边界框预测。其此前版本曾在ImageNet-1k和COCO 2017数据集上进行训练,具备卓越的识别性能。
yolov5 - 视觉AI对象检测和图像分类技术
YOLOv5,一款由Ultralytics开源的视觉AI模型,支持对象检测、图像分割与分类。提供全面文档及社区支持,适合各级用户使用,并定期更新以集成最新技术。
YOLOv8-multi-task - 轻量级神经网络实现实时多任务目标检测与分割
GithubYOLOv8多任务学习开源项目目标检测自动驾驶语义分割
YOLOv8-multi-task项目提出了一种轻量级神经网络模型,可同时执行目标检测、可行驶区域分割和车道线检测等多任务。该模型使用自适应拼接模块和通用分割头设计,在提高性能的同时保持高效率。实验表明,该模型在推理速度和可视化效果方面优于现有方法,适用于需要实时处理的多任务场景。
awesome-yolo-object-detection - YOLO目标检测开源项目与资源汇编
GithubYOLO实时检测开源项目机器学习目标检测视觉AI
提供YOLO目标检测的全面资源汇编。包含官方以及多个针对特殊任务或硬件的优化版本,涵盖YOLOv1至YOLOv7等系列。项目中还包括丰富的学习资源、应用示例及工具,为学者和开发者提供了解及使用YOLO技术的优质资料。
awesome-object-detection - 提供涵盖R-CNN至YOLOv3等系统目标检测资源
Fast R-CNNFaster R-CNNGithubMask R-CNNR-CNNYOLO开源项目
awesome-object-detection为研究者和开发者提供涵盖R-CNN至YOLOv3等系统目标检测资源,适用于学术研究与实际应用。
yolov3-tf2 - YOLOv3的TensorFlow实现,目标检测解决方案
GithubTensorFlow 2.0YoloV3开源项目检测训练预训练权重
该项目采用TensorFlow 2.0实现YOLOv3,提供预训练权重、推理示例和迁移学习功能,支持GPU加速、eager模式和图模式训练,并集成absl-py。用户可以方便地安装、训练和进行实时视频检测,同时支持TF模型导出和Serving。
tensorflow-yolov3 - 使用TensorFlow 2.0实现的YOLOv3目标检测教程
COCOGithubTensorFlow 2.0VOCYOLOv3开源项目目标检测
本文介绍了使用TensorFlow 2.0实现YOLOv3目标检测的方法,包括快速入门、训练自定义数据集和在VOC数据集上的评估。提供详细的代码示例和步骤说明,帮助开发者轻松训练和应用目标检测模型。文中附有中文博客链接,提供更多学习资源。
yolov9 - 高效准确的目标检测算法
GithubYOLOv9开源项目深度学习目标检测神经网络计算机视觉
YOLOv9是一种新型目标检测算法,采用可编程梯度信息技术提高学习能力。该开源项目提供YOLOv9的官方实现,包含预训练模型、训练评估脚本和使用文档。在COCO数据集上,YOLOv9展现出优异的检测性能,同时保持较低的模型复杂度。研究人员和开发者可利用这一工具进行高效准确的目标检测任务。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号