Project Icon

Vehicle-Detection

深度学习与YOLO算法实现的车辆检测系统

Vehicle-Detection项目结合深度学习和YOLO算法实现车辆检测。项目提供完整工作流程,涵盖数据集准备、模型训练和测试。采用YOLOv5预训练模型微调,集成wandb工具监控性能。项目包含自定义车辆数据集,并提供详细的安装、训练和测试指南。

DeepStream-Yolo - NVIDIA DeepStream SDK的YOLO模型配置与优化指南
CUDADeepStreamGithubNVIDIATensorRTYOLO开源项目
该项目为多个版本及平台的YOLO模型提供NVIDIA DeepStream SDK配置和优化指南,包括YOLOv5、YOLOv6、YOLOv7和YOLOv8等。项目功能涵盖INT8校准、动态批处理及GPU边界框解析,并提供详细的安装、使用和自定义模型指南,帮助用户实现高效的GPU处理和模型转换。
YOLO-World - 下一代实时开放词汇目标检测模型
GithubYOLO-World开放词汇开源项目目标检测零样本学习预训练模型
YOLO-World是一款创新的实时开放词汇目标检测模型。经过大规模数据集预训练,它展现出卓越的开放词汇检测和定位能力。采用'先提示后检测'范式,YOLO-World通过重参数化技术实现高效的自定义词汇推理。该模型支持零样本目标检测、分割等多种任务,并开源了在线演示、预训练权重和微调代码,为计算机视觉领域提供了实用的研究与应用工具。
TensorRT-YOLO - 为YOLO目标检测模型提供推理加速解决方案
CUDAGithubTensorRT-YOLOYOLO开源项目推理加速目标检测
此项目基于TensorRT,为YOLO目标检测模型提供推理加速解决方案,支持YOLOv3至YOLOv10及PP-YOLOE系列。集成EfficientNMS插件及CUDA技术,有效提升推理效率。支持C++和Python,包含CLI快速导出和推理功能,并提供Docker一键部署。推荐CUDA 11.6及以上版本和TensorRT 8.6及以上版本。
yolov10n - YOLOv10n:实时对象检测的创新技术
COCO数据集GithubHuggingfacePyTorch模型YOLOv10实时物体检测开源项目模型计算机视觉
YOLOv10n项目展示了对象检测的实时进展,结合计算机视觉与对象识别算法。其基于PyTorch的实现并支持COCO数据集用于训练与推理,保证了性能和应用的广泛性。简单的安装和模块调用,提供了快速的目标物体检测及识别功能,支持优化模型上传至相关平台,提升模型精度与效率。
Deep-Learning-for-Tracking-and-Detection - 使用深度学习进行对象检测和跟踪的论文与资源合集
GithubRCNNYOLOdeep learningmulti object trackingobject detection开源项目
本项目汇集了有关深度学习在对象检测和跟踪领域的论文、数据集、代码及各种资源。内容涵盖静态检测、视频检测、多对象跟踪和单对象跟踪等主题,并提供了多种经典模型如RCNN、YOLO、SSD的实现和改进方案。此外,项目还涵盖了图像和视频分割、光流、运动预测等任务的资源,为研究人员和开发者提供了详尽的参考资料。
ultimateALPR-SDK - 车牌识别及多功能车辆特性检测解决方案
AndroidDeep LearningGithubLicense Plate RecognitionNVIDIAUltimateALPR开源项目
结合最新深度学习技术,ultimateALPR-SDK 提供卓越的识别速度和精度。适用于多个操作系统和编程语言,功能包括车牌识别、夜视图像增强、车辆颜色识别等。通过内置计算减少系统成本,无需专用硬件或网络连接,适用于智能交通。支持多平台并附有详细文档和示例程序,帮助开发者迅速上手。
yolov3 - 开源视觉AI技术
GithubUltralyticsYOLOv3人工智能图像识别开源项目目标检测
YOLOv3是Ultralytics公司开发的开源视觉AI技术,汇集了广泛的研究和丰富经验。平台包含详尽的文档和教程,支持社区讨论,简化学习和实施过程。此技术因其出色性能和易用性,在全球范围内被广泛采用,帮助用户迅速部署并有效训练模型。
yolor - 改进的多任务统一网络实时对象检测模型
GithubYOLORYOLOv4多任务学习对象检测开源项目深度学习
该项目实现了一个新型多任务统一网络,基于最新论文支持多任务并在COCO数据集中的实时对象检测上表现出色。优化后的YOLOR模型在测试和验证中均显示出较高的AP值和运行速度,适用于多种实时应用场景。项目提供了详细的安装、训练和测试指南,支持Docker和Colab环境,适合研究人员和开发者在复杂场景中进行高效的对象检测。
CV - 全面的计算机视觉深度学习模型集合
Github图像分类开源项目深度学习目标检测计算机视觉语义分割
这个项目收集了多个计算机视觉领域的深度学习模型,包括图像分类、目标检测、语义分割和生成模型。项目为每个模型提供论文链接、详细解析和代码实现,涵盖从AlexNet到YOLO系列等经典算法。这是一个面向研究人员和开发者的综合性学习资源,有助于理解和应用先进的计算机视觉技术。
PaddleDetection - 目标检测套件支持多任务开发部署
GithubPaddleDetectionPaddlePaddle开源项目深度学习目标检测计算机视觉
PaddleDetection是基于PaddlePaddle的目标检测开发套件,支持通用、小目标、旋转框等多种检测任务。它提供PP-YOLOE、PP-PicoDet等高性能模型和丰富的模型组件,注重产业应用,帮助开发者实现从数据准备到模型部署的全流程开发。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号