Project Icon

Medical-SAM2

基于SAM2框架的2D和3D医学图像精准分割模型

Medical-SAM2是一个开源的医学图像分割模型,基于SAM2框架开发。该模型支持2D和3D医学图像分割,适用于REFUGE眼底图像和BTCV腹部多器官等数据集。项目提供环境配置、数据准备和训练步骤指南,以及预训练权重。Medical-SAM2为医学图像分析研究提供了实用的工具和资源。

CMB - 中文医学基准测试,全面评估医疗AI模型的知识与临床能力
CMBGithub人工智能医学基准测试开源项目数据集评估模型
Chinese Medical Benchmark (CMB)是一个全面的中文医学基准测试项目,由CMB-Exam和CMB-Clin两部分组成。CMB-Exam包含11200道测试题,覆盖6大类28个子类的医学知识。CMB-Clin提供74个复杂医疗咨询案例。该项目致力于评估医疗AI模型的知识储备和临床推理能力,为中文医疗AI发展提供参考标准。
breast_cancer_classifier - 深度学习模型助力乳腺癌筛查增强放射科医师诊断能力
Deep Neural NetworksGithubPyTorchbreast cancermammographyradiologists开源项目
该开源项目提供基于深度学习的预训练模型,能够提升乳腺癌筛查的准确性。项目包含仅图像和图像+热图两种模型,适用于标准视图的乳腺X光检查,支持GPU加速,使用Python和PyTorch实现,提供详细的示例数据和预测结果。
AlizaMS - 多功能DICOM查看器 为医学影像分析提供全面支持
3D渲染DICOMGithub医学影像去识别化多平面重建开源项目
AlizaMS是一款功能全面的DICOM查看器,集成2D和3D视图、体积渲染和多平面重建等核心功能。它具备快速目录扫描和DICOMDIR文件处理能力,同时保证DICOM数据的一致性匿名化。该软件支持RTSTRUCT轮廓显示、多视图研究和超声校准区域精确测量。AlizaMS还提供2D+t和3D+t动画效果,内置DICOM元数据查看器和2024b字典。软件兼容多数IOD类型,包括结构化报告和灰度软拷贝呈现状态。
MedTrinity-25M - 多粒度标注医学数据集推动医疗AI进步
GithubMedTrinity-25M医学数据集多模态多粒度标注大规模开源项目
MedTrinity-25M是一个大规模医学多模态数据集,包含2500万条多粒度标注。该数据集整合了医学图像和文本信息,采用创新处理流程和先进语言模型生成精细描述。它显著提升了医学视觉问答性能,为医疗AI发展提供重要资源。项目还开源了相关模型和代码,推动医学AI领域的开放协作。
segment-lidar - 基于SAM的航空LiDAR数据无监督分割Python工具包
GithubLiDARSAM分割开源项目点云自动化
segment-lidar是一个用于航空LiDAR数据无监督实例分割的Python工具包。它集成了Meta AI的Segment-Anything Model (SAM)和segment-geospatial包,实现3D点云数据的自动化分割。工具包具备地面滤波、自定义相机视图和交互式可视化等功能,安装简便,文档完善。适合处理大规模LiDAR数据的研究和开发需求。
CTK - 多功能医学影像分析与手术导航开源工具包
CTKDICOMGithubQt小部件医学影像分析开源项目插件框架
Common Toolkit (CTK)是一个社区驱动的开源项目,专注于医学影像分析和手术导航领域。它提供DICOM处理、应用程序托管、Qt小部件、插件框架和命令行接口等功能。CTK支持Qt5和Python3,并采用自动化依赖管理简化开发流程。该项目使用Apache 2.0许可证,可自由用于学术研究和商业应用。
nnDetection - 自适应医学目标检测框架
GithubnnDetection医学目标检测开源项目深度学习自动配置计算机辅助诊断
nnDetection是一个自适应医学目标检测框架,能够自动配置以适应不同医学检测任务。该框架在ADAM和LUNA16等公共基准测试中展现出与顶尖方法相当或更优的性能。项目支持Docker容器和本地安装,提供多个医学数据集的处理指南,便于复现实验结果和集成新数据集。nnDetection为医学目标检测研究提供了标准化接口和自动化工作流程。
Virchow2 - 基于神经网络的病理切片图像分析与特征提取模型
GithubHuggingfacePyTorchVirchow2图像识别开源项目模型深度学习病理学
Virchow2是一个专门用于病理切片分析的深度学习模型,通过310万张医学图像训练而成。模型能够自动分析不同放大倍率的病理图像,提取关键特征信息,为计算病理学研究提供基础支持。其采用先进的视觉转换器架构,具备强大的图像处理能力。目前仅向学术研究机构开放使用,需要通过机构邮箱认证。
TransMorph_Transformer_for_Medical_Image_Registration - 基于Transformer的无监督医学图像配准方法
GithubPyTorchTransMorphTransformer医学影像配准开源项目深度学习
TransMorph是一个利用Transformer架构进行无监督医学图像配准的开源项目,结合了Vision Transformer和Swin Transformer技术。提供多个模型变体和多种损失函数,支持单模态和多模态配准,公开了训练脚本和预训练模型,并在MICCAI 2021 L2R挑战中表现出色。
SyntheticTumors - 合成肿瘤数据助力AI提升真实肿瘤分割效果
AIGithub医学影像合成肿瘤开源项目深度学习肿瘤分割
SyntheticTumors项目开发了创新策略生成合成肝脏肿瘤数据,用于训练AI模型。研究发现,使用合成肿瘤数据训练的模型在真实肿瘤分割任务中表现优于使用真实肿瘤数据训练的模型。项目提供了多个合成肿瘤示例,展示了其与真实肿瘤的视觉相似性。这种方法为医学影像分析和AI辅助诊断提供了新的研究方向。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号