Project Icon

segment-anything-video

MetaSeg 开源图像和视频分割框架

MetaSeg是Segment Anything模型的封装版本,提供自动和手动图像视频分割功能。该项目支持多种预训练模型,可与SAHI和FalAI等工具集成,实现物体分割。MetaSeg支持pip安装,提供丰富的API接口,适用于图像分析和处理任务。

MetaSeg: Segment Anything 仓库的打包版本

teaser
downloads HuggingFace Spaces

包版本 下载次数 支持的Python版本 项目状态 pre-commit.ci

这个仓库是segment-anything模型的打包版本。

安装

pip install metaseg

使用方法

from metaseg import SegAutoMaskPredictor, SegManualMaskPredictor

# 如果GPU内存不足,请减少points_per_side和points_per_batch的值。

# 图像处理
results = SegAutoMaskPredictor().image_predict(
    source="image.jpg",
    model_type="vit_l", # vit_l, vit_h, vit_b
    points_per_side=16,
    points_per_batch=64,
    min_area=0,
    output_path="output.jpg",
    show=True,
    save=False,
)

# 视频处理
results = SegAutoMaskPredictor().video_predict(
    source="video.mp4",
    model_type="vit_l", # vit_l, vit_h, vit_b
    points_per_side=16,
    points_per_batch=64,
    min_area=1000,
    output_path="output.mp4",
)

# 手动框选和点选

# 图像处理
results = SegManualMaskPredictor().image_predict(
    source="image.jpg",
    model_type="vit_l", # vit_l, vit_h, vit_b
    input_point=[[100, 100], [200, 200]],
    input_label=[0, 1],
    input_box=[100, 100, 200, 200], # 或 [[100, 100, 200, 200], [100, 100, 200, 200]]
    multimask_output=False,
    random_color=False,
    show=True,
    save=False,
)

# 视频处理

results = SegManualMaskPredictor().video_predict(
    source="video.mp4",
    model_type="vit_l", # vit_l, vit_h, vit_b
    input_point=[0, 0, 100, 100],
    input_label=[0, 1],
    input_box=None,
    multimask_output=False,
    random_color=False,
    output_path="output.mp4",
)

SAHI + Segment Anything

pip install sahi metaseg
from metaseg.sahi_predict import SahiAutoSegmentation, sahi_sliced_predict

image_path = "image.jpg"
boxes = sahi_sliced_predict(
    image_path=image_path,
    detection_model_type="yolov5",  # yolov8, detectron2, mmdetection, torchvision
    detection_model_path="yolov5l6.pt",
    conf_th=0.25,
    image_size=1280,
    slice_height=256,
    slice_width=256,
    overlap_height_ratio=0.2,
    overlap_width_ratio=0.2,
)

SahiAutoSegmentation().image_predict(
    source=image_path,
    model_type="vit_b",
    input_box=boxes,
    multimask_output=False,
    random_color=False,
    show=True,
    save=False,
)
teaser

FalAI(云端GPU) + Segment Anything

pip install metaseg fal_serverless
fal-serverless auth login
# 自动蒙版
from metaseg import falai_automask_image

image = falai_automask_image(
    image_path="image.jpg",
    model_type="vit_b",
    points_per_side=16,
    points_per_batch=32,
    min_area=0,
)
image.show() # 显示图像
image.save("output.jpg") # 保存图像

# 手动蒙版
from metaseg import falai_manuelmask_image

image = falai_manualmask_image(
    image_path="image.jpg",
    model_type="vit_b",
    input_point=[[100, 100], [200, 200]],
    input_label=[0, 1],
    input_box=[100, 100, 200, 200], # 或 [[100, 100, 200, 200], [100, 100, 200, 200]],
    multimask_output=False,
    random_color=False,
)
image.show() # 显示图像
image.save("output.jpg") # 保存图像

附加功能

  • 支持Yolov5/8、Detectron2、Mmdetection、Torchvision模型
  • 支持视频和Web应用程序(Huggingface Spaces)
  • 支持手动单框、多框和点选
  • 支持pip安装
  • 支持SAHI库
  • 支持FalAI
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号