Project Icon

battery-rul-estimation

深度学习模型预测锂离子电池剩余使用寿命

这个开源项目使用自编码器结合LSTM和CNN深度学习模型,估计锂离子电池的剩余使用寿命(RUL)。基于NASA和UNIBO数据集进行实验,项目提供完整的数据处理和模型训练流程。这种方法可用于电池管理系统,有助于优化电池使用效率。

RUL - Transformer和AttMoE网络在锂电池剩余寿命预测中的应用
AttMoEGithubTransformer开源项目数据集机器学习锂电池寿命预测
本项目探索了Transformer和AttMoE网络在锂电池剩余寿命预测领域的应用。研究基于NASA和CALCE数据集进行实验,展示了详细的实验结果和模型架构。项目分析了dropout和noise_level参数对模型性能的影响,并提出了优化建议。代码采用PyTorch实现,并提供了相关学术文献引用。此外,项目还整理了多个锂电池寿命预测研究的相关资源,为该领域的研究人员提供了comprehensive参考。项目内容包括模型图示、实验结果可视化以及代码包依赖说明。研究者可以通过提供的邮箱地址与作者进行进一步交流。项目持续更新,最新增加了AttMoE相关内容和预测图表。
Predictive-Maintenance-using-LSTM - LSTM神经网络预测飞机发动机故障时间 助力预防性维护
GithubLSTM开源项目机器学习神经网络预测性维护飞机引擎
这个开源项目利用LSTM神经网络分析飞机传感器数据,预测发动机剩余使用寿命和潜在故障时间。项目采用回归模型和二元分类两种方法,分别预测剩余工作周期和特定周期内的故障概率。实验结果表明,该方法在预测准确性和可靠性方面表现优异,为航空维护领域提供了实用的预测性维护解决方案。
ECG-Heartbeat-Classification-seq2seq-model - 序列到序列深度学习模型实现心电图心跳分类与心律失常检测
ECG心跳分类GithubMIT-BIH数据库序列到序列模型开源项目心律失常检测深度学习
项目利用序列到序列深度学习方法进行心电图心跳分类和心律失常检测,涵盖患者间和患者内两种情况。采用MIT-BIH心律失常数据库评估,提供预处理数据集和训练脚本。模型在分类任务中表现出色,为心脏病学研究提供新方法。代码开源,仅供学术和非商业使用。
stock-prediction-deep-neural-learning - 基于深度学习的股票价格预测系统
GithubLSTMyFinance开源项目时间序列预测深度神经网络股票预测
这个开源项目利用LSTM神经网络和TensorFlow实现股票价格时间序列预测。它通过yFinance库获取市场数据,分析股票信息、持有人等关键数据。该系统旨在识别股票价格模式,提高预测准确性,为投资决策提供参考。这是一个面向股市分析的人工智能解决方案。
Byterat - 电池科学数据实时管理与分析平台
AI工具Byterat数据分析数据平台电池数据电池科学
Byterat作为现代化电池科学数据平台,为电池研发和生产团队提供全面支持。平台实时同步处理多种循环仪原始数据,支持全天候远程访问。内置电池科学家开发的分析报告工具,便于快速获取关键指标。支持多种数据可视化方式和预测性分析功能,突显平台特色。支持主流设备集成,兼具企业级安全性和扩展性,助力组织实现数据驱动决策,推动电池技术创新。
deepsleepnet - 自动睡眠阶段评分深度学习模型
DeepSleepNetEEGGithub开源项目深度学习睡眠阶段评分神经系统工程
DeepSleepNet是一个创新的深度学习模型,用于基于原始单通道脑电图(EEG)数据的自动睡眠阶段评分。其独特的双阶段架构融合了表示学习和序列残差学习技术,大幅提升了评分准确性。通过在MASS和Sleep-EDF等公开数据集上的严格评估,DeepSleepNet展现出优于传统手工特征工程方法的卓越性能。这一高效、精确的自动化工具为睡眠障碍诊断、睡眠质量监测等睡眠研究和临床应用领域带来了新的可能。
Deep_Learning_Machine_Learning_Stock - 深度学习和机器学习在股票市场预测中的应用
Github人工智能开源项目机器学习深度学习算法股票预测
本项目深入探讨了深度学习和机器学习在股票市场预测中的应用。从数据收集到模型训练,涵盖了算法选择、过拟合处理和性能优化等关键环节。项目融合了技术分析和基本面分析,并探讨了长短期预测策略。这是一个面向研究者和开发者的综合性资源,旨在展示人工智能在金融市场分析中的潜力。
CEEMDAN_LSTM - CEEMDAN与LSTM结合的时序预测模型
CEEMDAN_LSTMGithub开源项目数据分解时间序列预测神经网络金融预测
CEEMDAN_LSTM是一个Python模块,结合完整集成经验模态分解(CEEMDAN)和长短期记忆(LSTM)神经网络进行时序预测。该项目提供多种预测方法和评估工具,支持灵活的参数设置,适用于金融等领域的复杂时序数据分析。它简化了分解集成预测的实现过程,有助于研究人员和数据分析师快速构建和优化预测模型。CEEMDAN_LSTM支持多种预测方法,包括单一、集成、分别和混合预测等。它还提供了统计测试、热图绘制和DM测试等模型评估工具,有助于全面分析预测结果。
U-Time - 深度学习模型实现高频睡眠自动分期
GithubU-SleepU-Time开源项目时间序列分割深度学习睡眠分期
U-Sleep是基于U-Time时间序列分割模型开发的深度学习系统,专门用于高频睡眠自动分期。它能适应多种临床人群和多导睡眠记录协议,提供准确稳健的分期结果。该项目包含模型的完整实现,支持训练和评估,并提供命令行接口便于操作使用。
Time-series-classification-and-clustering-with-Reservoir-Computing - 基于储层计算的时间序列分析框架
GithubReservoir Computing开源项目时间序列分类时间序列聚类机器学习神经网络
这个开源项目利用储层计算技术,实现了时间序列数据的分类、聚类和预测功能。它支持处理单变量和多变量时间序列,并提供了易用的Python库。项目包含多个功能模块、丰富的数据集和高级示例。其特有的储层模型空间表示方法在处理复杂时间序列任务时表现出色。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号