Project Icon

UNetPlusPlus

嵌套U-Net架构优化医学图像分割

UNet++是一种改进的医学图像分割架构,通过重新设计跳跃连接和密集连接解码器,解决了U-Net的架构深度和连接设计问题。项目提供Keras和PyTorch实现,并获得多个第三方支持。UNet++在医学图像分割任务中表现优异,为研究提供了有力工具。该项目已在GitHub开源,欢迎研究者使用和贡献。

univnet - 具有多分辨率频谱图鉴别器的神经声码器
GANGithubUnivNet开源项目神经合成器音频样本高保真波形生成
UnivNet是一种利用多分辨率频谱鉴别器的神经声码器,旨在提供高保真波形生成。本项目包括一个非官方PyTorch实现,并可与原始研究的客观评分相匹敌。它在主观评测中胜过HiFi-GAN,推理速度也比HiFi-GAN快1.5倍。项目还提供预置的训练参数和预训练模型,支持高度自定义和不同的音频数据源。
breast_cancer_classifier - 深度学习模型助力乳腺癌筛查增强放射科医师诊断能力
Deep Neural NetworksGithubPyTorchbreast cancermammographyradiologists开源项目
该开源项目提供基于深度学习的预训练模型,能够提升乳腺癌筛查的准确性。项目包含仅图像和图像+热图两种模型,适用于标准视图的乳腺X光检查,支持GPU加速,使用Python和PyTorch实现,提供详细的示例数据和预测结果。
ULIP - 多模态预训练框架实现3D数据理解
3D理解GithubULIP多模态预训练开源项目点云分类零样本分类
ULIP是一种多模态预训练框架,集成了语言、图像和点云数据以增强3D理解能力。该框架适用于多种3D骨干网络,如Pointnet2和PointBERT等,无需增加处理延迟。ULIP-2在此基础上进行了扩展,提高了预训练的可扩展性。项目开源了预训练模型、数据集和使用指南,为3D数据分析奠定了基础。
torch-conv-kan - 引入基于Kolmogorov-Arnold表示理论的高效卷积神经网络
CUDAConvolutional layersGithubKolmogorov-Arnold NetworksPyTorchTorchConv KAN开源项目
项目展示了使用PyTorch和CUDA加速的Kolmogorov-Arnold网络(KAN)模型的训练、验证和量化,支持MNIST、CIFAR、TinyImagenet和Imagenet1k数据集的性能评估。当前项目持续开发,已发布涉及ResNet、VGG、DenseNet、U-net等架构的新模型和预训练权重,适用于医疗图像分割和高效卷积神经网络的进一步研究和优化。
RestoreFormerPlusPlus - 先进的高质量人脸图像修复技术
AIGithubRestoreFormer++人脸修复图像处理开源项目深度学习
RestoreFormerPlusPlus是一种高级人脸图像修复方法,采用全空间注意力机制和扩展退化模型(EDM)提高修复效果的保真度和真实感。该方法利用丰富的上下文信息和高质量先验,提升了对真实场景的适应性和通用性。项目开源了预训练模型、推理代码和在线演示,为研究和开发人员提供了实现高质量人脸图像修复的便捷工具。
ISBNet - 高效准确的3D点云实例分割网络实现先进场景理解
3D点云GithubISBNet实例分割开源项目深度学习计算机视觉
ISBNet是一种创新的3D点云实例分割网络,采用实例感知采样和框感知动态卷积技术。通过多任务学习方法和轴对齐边界框预测,ISBNet在ScanNetV2、S3DIS和STPLS3D等数据集上实现了领先的分割精度,同时保持快速推理速度。该方法有效解决了密集场景中相同语义类别物体的分割问题,为3D场景理解提供了新的解决方案。
SAT - 突破性医学图像分割模型,支持多模态多区域文本提示
GithubSAT医学图像分割多模态开源项目文本提示通用分割模型
SAT是一个基于72个公共3D医学分割数据集构建的通用医学图像分割模型。它通过文本提示可分割MR、CT、PET三种模态和8个人体区域的497个类别。相比传统专家模型,SAT在效率和性能上都有所提升。项目开源了完整代码、预训练模型和数据集,为医学图像分析和AI研究提供了新的工具和资源。
Diffusion_models_from_scratch - 完整实现扩散模型的开源框架与教程
Diffusion模型GithubImageNetU-Net图像生成开源项目预训练模型
该项目提供了一个完整的扩散模型实现框架,包含DDPM、DDIM和无分类器引导模型。项目特点包括:基于ImageNet 64x64数据集的预训练模型、详细的环境配置和数据准备指南、全面的训练和推理脚本,以及多种模型架构和优化策略。开发者可以利用此框架轻松训练自定义扩散模型或使用预训练模型生成图像。
InternImage - 突破大规模视觉基础模型性能极限
GithubInternImage图像分类大规模视觉模型开源项目目标检测语义分割
InternImage是一款采用可变形卷积技术的大规模视觉基础模型。它在ImageNet分类任务上实现90.1%的Top1准确率,创下开源模型新纪录。在COCO目标检测基准测试中,InternImage达到65.5 mAP,成为唯一突破65.0 mAP的模型。此外,该模型在涵盖分类、检测和分割等任务的16个重要视觉基准数据集上均展现出卓越性能,树立了多个领域的新标杆。
Segment-Anything-CLIP - 整合Segment-Anything与CLIP的图像分析框架
CLIPGithubsegment-anything人工智能图像分割开源项目计算机视觉
项目通过结合Segment-Anything的分割能力和CLIP的识别功能,构建了一个高效的图像分析框架。系统可自动生成多个分割掩码,并对每个掩码区域进行分类。这种创新方法不仅提高了图像分析的精度,还为计算机视觉领域的研究和应用开辟了新途径。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号