Project Icon

Jetson-Nano-Ubuntu-20-image

Jetson Nano Ubuntu 20.04深度学习环境配置指南

介绍如何在Jetson Nano上安装和配置Ubuntu 20.04操作系统,预装OpenCV、TensorFlow和Pytorch等核心深度学习工具。包括更新日志、安装步骤和下载链接,适合在Jetson Nano上运行AI模型的开发者。

iAI - 在Ubuntu平台上设置AI实验环境的详细指导
AICUDAGithubNVIDIAPytorchUbuntu开源项目
这篇文章提供了在Ubuntu平台上设置AI实验环境的详细指导,涵盖硬件要求、双系统安装、NVIDIA驱动、CUDA、cuDNN、Anaconda、OpenCV、Docker、TensorRT、Pytorch等软件的安装与配置。内容包括从基础环境搭建到深度学习算法如YOLO V3和Faster R-CNN的实际应用,并附有常见问题解答和最佳实践,帮助用户高效构建AI开发环境。
jetson-containers - 为NVIDIA Jetson提供的模块化AI和机器学习容器系统
AI容器DockerGithubJetPackJetsonNVIDIA开源项目
提供适用于NVIDIA Jetson设备的多种AI和机器学习容器,包括PyTorch、TensorFlow、ONNXRuntime和DeepStream等,支持灵活设置不同CUDA版本,并组合多个包如ROS2和Transformer。通过命令行工具可快速运行所需的容器镜像,并有详细文档和教程帮助用户最大化利用Jetson平台的计算能力,简化机器学习和计算机视觉任务的实现。
yolov5-deepsort-tensorrt - 基于YOLOv5和DeepSORT的Jetson设备目标跟踪系统
DeepSortGithubJetsonTensorRTYolov5开源项目目标跟踪
这个项目是YOLOv5和DeepSORT算法在Jetson设备上的C++实现,针对Jetson Xavier NX和Jetson Nano进行了优化。系统能够高效跟踪多个人头目标,在Jetson Xavier NX上处理70多个目标时可达到10 FPS。项目包含环境配置、模型生成和运行指南,支持自定义模型,并提供了不同YOLOv5版本的兼容性说明。适合需要在边缘设备上进行高性能目标跟踪的应用场景。
jetson-inference - 深度学习部署与实时视觉识别
GithubNVIDIA JetsonPyTorchTensorRT实时视觉开源项目深度学习
NVIDIA Jetson设备上的深度学习推理和实时视觉处理库。使用TensorRT优化GPU网络运行,支持C++和Python, 以及PyTorch模型训练。功能包括图像分类、物体检测、语义分割等,适用于多种应用场景,如实时摄像头流和WebRTC网络应用。
DeepStream-Yolo - NVIDIA DeepStream SDK的YOLO模型配置与优化指南
CUDADeepStreamGithubNVIDIATensorRTYOLO开源项目
该项目为多个版本及平台的YOLO模型提供NVIDIA DeepStream SDK配置和优化指南,包括YOLOv5、YOLOv6、YOLOv7和YOLOv8等。项目功能涵盖INT8校准、动态批处理及GPU边界框解析,并提供详细的安装、使用和自定义模型指南,帮助用户实现高效的GPU处理和模型转换。
jetson-nano-baseboard - Antmicro开源基板支持多款NVIDIA Jetson模块
AntmicroGithubJetson BaseboardMIPI CSI-2NVIDIA开源硬件开源项目
这款开源基板由Antmicro设计,支持NVIDIA Jetson Nano、Xavier NX和TX2 NX系统级模块(SoM)。基板通过FFC连接器支持多达4个MIPI CSI-2摄像头,集成千兆以太网、USB-C、HDMI、DisplayPort和M.2等接口。设计文件采用KiCad维护,并提供详细文档和Linux补丁,便于开发者进行定制。该项目为嵌入式AI和计算机视觉应用提供了灵活的硬件平台。
DeepLearningExamples - 优化深度学习训练和部署的最佳实践
CUDA-XDeep LearningGithubNGCNVIDIATensor Cores开源项目
提供最新的深度学习示例,使用NVIDIA CUDA-X软件栈在Volta、Turing和Ampere GPU上运行,确保最佳的可重复精度和性能。示例通过NGC容器注册表每月更新,包含最新的NVIDIA贡献和深度学习软件库,支持计算机视觉、自然语言处理、推荐系统、语音识别、文本到语音转换、图神经网络和时间序列预测模型。
TensorRT_Tutorial - 深度学习推理加速实践指南
GPU加速GithubINT8量化TensorRT开源项目性能优化深度学习
TensorRT_Tutorial项目是一个综合性资源库,提供NVIDIA TensorRT深度学习推理加速的实用指南。项目包含中文文档翻译、视频教程、博客文章和代码示例,覆盖TensorRT的基础使用和高级优化。内容涉及核心功能介绍、实际应用经验和优化技巧,为深度学习从业者提升模型推理性能提供了宝贵参考。
YOLOv8-TensorRT - 通过TensorRT加速YOLOv8模型,提供在CUDA环境下的快速部署和推理解决方案
CUDAGithubONNXPyTorchTensorRTYOLOv8开源项目
本项目通过TensorRT加速YOLOv8模型,提供在CUDA环境下的快速部署和高效推理解决方案。包括环境准备、模型导出、引擎构建和多种推理方法,支持Python和C++语言。特性涵盖ONNX模型导出、端到端引擎构建和模型推理,适用于图像和视频的不同输入源。支持Jetson设备,并附有详细的文档和脚本,便于操作,提升深度学习应用性能。
dl-engineer-guidebook - 介绍深度学习工程师所需的知识, 硬件配置与软件环境详解
GithubLinux命令Python环境macOS环境开源项目深度学习深度学习工作站
本指南详细介绍深度学习工程师所需的知识,包括深度学习工作站配置、操作系统选择和硬件推荐、macOS和Ubuntu环境搭建与优化、Python环境设定、常用Linux命令等。还涵盖CV学习资源及数据集、经典预训练模型和TensorBoard的使用方法,助力工程师在深度学习领域发展。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号