Project Icon

sn-gamestate

创新足球比赛状态重建技术实现运动员追踪与识别

SoccerNet Game State Reconstruction项目提出了一种新的计算机视觉任务,通过单个移动摄像头追踪和识别足球运动员,并构建小型地图。该项目引入了包含200个标注视频片段的数据集和新评估指标,提供了基于深度学习的基线系统和开源代码库。这一创新技术为体育行业提供了自动化比赛状态重建的工具,有望推动相关研究的进一步发展。

openscene - 零样本3D场景理解和任务执行工具
3D场景理解CVPR 2023GithubOpenScene开源项目语义分割零样本
OpenScene是一个实时交互的3D场景理解工具,支持使用开放词汇进行查询。用户可输入任意短语,系统会自动高亮相应区域。支持多种数据集和预处理选项,可执行零样本3D语义分割、稀有物体搜索和基于图像的3D物体检测。其特点包括无需GPU运行、支持多视角特征融合和模型蒸馏。所有代码和数据集均可在GitHub获取,适用于广泛的研究和开发应用。
MVHumanNet - 多视角日常穿着人体捕捉大规模数据集
GithubMVHumanNet人体捕捉多视角开源项目数据集计算机视觉
MVHumanNet是一个大规模多视角人体捕捉数据集,包含4,500个人物身份、9,000套日常服装和60,000个动作序列。数据集提供645百万帧图像,附带丰富标注,如人体遮罩、相机参数、2D/3D关键点、SMPL/SMPLX参数及相应文本描述。这一资源为计算机视觉和人体建模研究提供了重要支持,适用于多种应用场景。
Pixellot - 智能体育赛事自动化制作与分析平台
AI体育摄像AI工具Pixellot体育分析体育流媒体自动化直播
Pixellot提供AI驱动的体育赛事自动化制作解决方案,包括智能摄像、直播、数据分析和商业变现。其系统无需人工操作即可捕捉和制作比赛,显著降低制作成本。该技术已在全球广泛应用于各级别赛事,让更多体育内容得以呈现,为观众、教练和运动员带来优质体验。Pixellot致力于用创新科技推动体育产业发展,让每场比赛都能被记录和分享。
MotionLLM - 融合视频和动作数据的人类行为理解先进AI模型
GithubMotionLLM人工智能人类行为理解多模态学习大语言模型开源项目
MotionLLM是一个人类行为理解框架,通过融合视频和动作序列数据来分析人类行为。该项目采用统一的视频-动作训练策略,结合粗粒度视频-文本和细粒度动作-文本数据,以获得深入的时空洞察。项目还包括MoVid数据集和MoVid-Bench评估工具,用于研究和评估人类行为理解。MotionLLM在行为描述、时空理解和推理方面展现出优越性能,为人机交互和行为分析研究提供了新的方向。
dreamoving-project - 基于扩散模型的人工智能视频生成框架
DreaMovingGithub人工智能人物视频开源项目扩散模型视频生成
DreaMoving是一个基于扩散模型的视频生成框架,专注于创建高质量的定制人物视频。该系统可根据文本描述在多样化场景中生成人物动作视频,例如海滩、公园和埃及金字塔等。这个由阿里巴巴智能计算研究院开发的项目提供中英文在线演示,体现了人工智能在视频生成领域的最新技术进展。
bassl - BaSSL算法推动视频场景分割性能提升
BaSSLGithub开源项目微调自监督学习视频场景分割预训练
BaSSL是一种针对视频场景分割的自监督学习算法。它利用伪边界和边界感知预训练任务,最大化场景内相似性并最小化场景间差异。通过在预训练阶段学习边界间的上下文转换,BaSSL显著提升了视频场景分割性能。该算法在MovieNet-SSeg数据集上的测试结果表明,它具有优越的分割效果。
multi-hmr - 单次处理实现多人全身3D人体网格重建
GithubMulti-HMR人体网格重建多人检测开源项目深度学习计算机视觉
Multi-HMR是一种高效的单次处理模型,用于多人全身人体网格重建。该模型仅需一张RGB图像输入,即可在相机空间中重建多个人的3D模型。项目在BEDLAM、EHF等多个数据集上实现了领先性能,并提供预训练模型和演示代码,可应用于图像中的多人3D重建任务。
gtsfm - 高性能并行结构运动恢复管线GTSfM
3D重建GTSAMGTSfMGithub并行计算开源项目结构运动恢复
GTSfM是一个基于GTSAM的开源结构运动恢复(SfM)管线,专为并行计算设计。它利用Dask实现分布式处理,集成了SuperPoint和SuperGlue等先进算法。GTSfM提供Python接口,无需编译即可使用。该项目支持多种场景重建任务,可与Nerfstudio等工具集成,为计算机视觉领域提供了灵活高效的解决方案。
SparseBEV - 多摄像头视频中的高性能稀疏3D目标检测技术
GithubICCV 2023PyTorchSparseBEVnuScenes开源项目立体检测
SparseBEV利用多摄像头视频实现高性能稀疏3D目标检测,得到ICCV 2023的认可,并提供PyTorch实现、训练和评估指南。新发布的SparseOcc展示了全稀疏架构支持多种预训练权重和配置文件。用户可使用提供的代码进行可视化和模型优化,实现高效3D检测。兼容不同版本的PyTorch和CUDA,表现卓越。
SlowFast - 开源视频理解框架 提供多种先进模型架构
GithubPySlowFast开源项目深度学习神经网络模型视频理解计算机视觉
PySlowFast是FAIR开发的开源视频理解代码库,提供高效训练的先进视频分类模型。支持SlowFast、Non-local Neural Networks、X3D和Multiscale Vision Transformers等多种架构。该框架便于快速实现和评估视频研究创新,涵盖分类、检测等任务。PySlowFast兼具高性能和轻量级特点,适用于广泛的视频理解研究。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号