Project Icon

P-tuning-v2

深度提示调优技术提升小型模型性能 媲美传统微调方法

P-tuning v2是一种创新的提示调优策略,通过深度提示调优技术为预训练Transformer的每层输入应用连续提示。这种方法显著提升了连续提示的容量,有效缩小了与传统微调方法的性能差距,尤其在小型模型和复杂任务中表现突出。研究表明,P-tuning v2在BERT和RoBERTa等模型上取得了优异成果,在多项NLP任务中达到了与微调相当的水平,为发展参数高效的模型调优技术开辟了新途径。

modded-nanogpt - 基于PyTorch的高效GPT-2训练器变体
GPT-2GithubNanoGPTPyTorch开源项目模型优化训练效率
Modded-NanoGPT是一个基于Andrej Karpathy的llm.c项目的GPT-2训练器变体。该项目通过引入旋转嵌入等现代技术,将训练效率提高一倍,仅需5B tokens即可达到与原版相同的验证损失。代码简化至446行,实现了124M参数的transformer模型。在Fineweb验证集上,模型达到3.2818的验证损失。通过架构调整和超参数优化,该项目在保持性能的同时显著提升了训练速度。
LLM-Finetuning - 大型语言模型高效微调指南
GithubHugging FaceLoRAPEFT大型语言模型开源项目微调
了解如何使用LoRA和Hugging Face Transformers库高效微调大型语言模型。项目提供详细的教程笔记本,包括在Colab中微调Llama 2、GPT-Neo-X-20B、MPT-Instruct-30B等模型的指导和代码示例。无论新手或专家,均可找到实用资源,提升语言模型性能。欢迎贡献和提交问题,共同完善此开源项目。
ChatGLM-Efficient-Tuning - 微调ChatGLM-6B模型,支持多种训练和量化方法
ChatGLMGithubRLHF开源项目数据集机器学习高效微调
ChatGLM-Efficient-Tuning项目提供高效微调ChatGLM-6B模型的工具和方法,支持LoRA、P-Tuning V2等多种微调方式,适用于单GPU和多GPU训练。项目还提供Web UI和CLI操作,支持4-bit和8-bit量化训练。通过丰富的数据集和功能,如强化学习和模型评估,满足不同场景的微调需求。详情请参见项目Wiki。
PanelGPT - 优化语言模型推理性能的全新零样本提示词方法
GithubPanelGPT开源项目推理能力提示词语言模型零样本提示
PanelGPT通过引入专家小组讨论的零样本提示词,有效提升了语言模型在复杂任务上的表现。通过使用gpt-3.5-turbo进行评估,其在GSM8K数据集上的表现突出,验证了该方法的有效性。综合专家讨论模式与自洽性理论,帮助模型更准确地理解和解决问题,为语言模型的推理能力提供了新方案。
academic-budget-bert - 学术预算下的BERT模型高效训练方案
BERTGithub开源项目微调深度学习自然语言处理预训练
该项目提供一套脚本,用于在有限计算资源和时间预算下预训练和微调BERT类模型。基于DeepSpeed和Transformers库,项目实现了时间感知学习率调度和混合精度训练等优化技术。此外,还包含数据预处理、检查点保存和验证调度等功能,并提供训练命令生成工具。这些方法使研究人员能在学术预算限制内高效训练大型语言模型。
LLamaTuner - 大语言模型微调工具,支持几乎所有GPU
GithubLLamaTunerSupervised fine-tuning dataset大语言模型开源项目数据预处理模型训练
LLamaTuner是一款高效、灵活且功能全面的大语言模型微调工具。支持在几乎所有GPU上进行大语言模型的预训练和微调,包括单个8GB GPU上微调7B LLM和超过70B模型的多节点微调。自动调度高性能算子如FlashAttention和Triton内核,兼容DeepSpeed以提升训练吞吐量。支持多种LLM和VLM,以及QLoRA和LoRA等多种训练算法,提供连续预训练、指令微调和代理微调等功能,还能与大型模型进行对话。
VPGTrans - 低成本跨语言模型迁移的视觉提示生成器VPGTrans指南
GithubVL-LLMVL-LLaMAVL-VicunaVPGTrans开源项目视觉提示生成器
VPGTrans框架通过迁移视觉提示生成器,显著降低大语言模型的资源消耗和训练数据需求。该项目包括VL-LLaMA和VL-Vicuna两阶段训练方法,并详细介绍了安装、评估和训练步骤,由新加坡国立大学和清华大学的研究人员开发。
torchtune - PyTorch原生库助力简化大语言模型开发
GithubLLMPyTorchtorchtune开源项目微调模型训练
torchtune是一个PyTorch原生库,专为简化大语言模型(LLM)的创建、微调和实验而设计。该库提供了主流LLM的PyTorch实现、易用的微调技术配方、YAML配置文件和多种数据集格式支持。torchtune注重与生态系统工具集成,如Hugging Face、EleutherAI评估工具和PyTorch FSDP等。支持多种模型和微调方法,并优化内存效率,适配不同硬件环境。
Instruction-Tuning-Survey - 深入探讨大型语言模型的指令微调技术及应用
DatasetsGithubInstruction TuningLarge Language ModelsModelsarXiv开源项目
本文综述了大型语言模型的指令微调技术,包括方法学、数据集构建、模型训练及多模态和领域应用。探讨了影响指令微调效果的关键因素,如数据集规模和质量等,并指出了当前技术的局限性及未来改进方向。
GPT-2 - 开源语言模型训练与实现探索
GPT-2Github代码复现开源项目数据预处理模型架构训练循环
本项目是基于Andrej Karpathy代码的GPT-2开源实现。通过详细注释解释模型架构和训练过程,包含核心文件如模型结构、训练循环和数据预处理。计划添加KV-Cache、RoPE等功能。虽然Hellaswag测试性能略低,但为学习大型语言模型提供了重要资源。项目展示了模型训练过程中的各种考虑因素,如权重初始化、学习率调整等技术细节。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号