Project Icon

ViTAE-Transformer-Remote-Sensing

遥感图像解释的视觉变压器模型集合

ViTAE-Transformer-Remote-Sensing项目致力于遥感图像解释领域的视觉变压器模型研究。该项目涵盖遥感预训练、场景识别、语义分割和目标检测等多项任务,提出了RVSA和MTP等创新模型架构和训练方法。项目还开发了SAMRS大规模遥感分割数据集。这些成果有助于推进遥感基础模型的发展,为遥感应用提供技术支持。项目成果包括遥感预训练研究、场景识别模型、语义分割技术和目标检测算法。RVSA和MTP等创新架构提升了模型性能和效率。SAMRS数据集的开发为遥感分割任务提供了大规模训练资源。

vit-large-patch16-384 - Vision Transformer大模型,提升高分辨率图像分类表现
GithubHuggingfaceImageNetVision Transformertransformer图像分类开源项目模型深度学习
项目提供了预训练于ImageNet-21k并在ImageNet 2012上微调的Vision Transformer(ViT)大模型。ViT通过将图像分为固定大小的补丁并使用Transformer编码器进行解析,提升了分类精度和特征提取能力,支持高分辨率视觉识别任务并兼容PyTorch使用。
sam-vit-huge - SAM 革新性的通用图像分割模型
AI模型GithubHuggingfaceSAM图像分割开源项目模型深度学习计算机视觉
Segment Anything Model (SAM) 是Facebook Research开发的先进图像分割模型。它能根据点或框等简单提示生成精确的对象蒙版,在1100万图像和11亿蒙版的大规模数据集上训练。SAM具备强大的零样本迁移能力,可应用于多种分割任务。模型由视觉编码器、提示编码器和蒙版解码器构成,既可生成单个目标蒙版,也能自动分割整图所有对象。SAM为计算机视觉领域带来了新的可能性。
vitmatte-small-composition-1k - Vision Transformer驱动的先进图像抠图模型
GithubHuggingfaceViTMatte图像抠图开源项目模型深度学习视觉transformer计算机视觉
ViTMatte-small-composition-1k模型采用Vision Transformer技术,为图像抠图任务带来突破性进展。其简洁有效的结构设计,结合Composition-1k数据集的训练,实现了高精度的前景对象分割。该开源项目不仅为研究人员提供了直接可用的工具,还通过Hugging Face平台支持进一步的模型优化,推动了计算机视觉技术的发展。
sam-vit-base - 基于ViT的高效零样本图像分割模型
GithubHuggingfaceSAM人工智能图像分割开源项目模型深度学习计算机视觉
sam-vit-base是Segment Anything Model (SAM)的ViT Base版本,一个强大的图像分割模型。它可根据点或框等输入提示生成高质量对象掩码,适用于多种分割任务。该模型在庞大数据集上训练,具备出色的零样本性能。其架构包含视觉编码器、提示编码器和掩码解码器,支持提示式和自动化掩码生成,为计算机视觉研究提供了新的可能性。
vit_large_patch14_reg4_dinov2.lvd142m - 带寄存器的视觉Transformer模型用于图像特征提取
DINOv2GithubHuggingfaceVision Transformertimm图像分类开源项目模型特征提取
vit_large_patch14_reg4_dinov2.lvd142m是一个带寄存器的视觉Transformer模型,在LVD-142M数据集上使用自监督DINOv2方法预训练。该模型具有3.044亿参数,可处理518x518大小的图像,适用于图像分类和特征提取任务。它结合了ViT和DINOv2技术,为计算机视觉应用提供了高效的解决方案。
TransformerHub - 实现与参考多种Transformer模型
BERTGPTGithubTransformerTransformerHubViT开源项目
此项目实现了多种Transformer架构,包括seq2seq、仅编码器、仅解码器和统一模型,旨在提高编程技能并提供深度学习参考。特色包括多种Attention模块、位置嵌入和采样方法,当前进展是实现DINO模型。项目受到多个开源项目的启发和支持。
gta - 几何感知注意力机制增强多视图Transformer性能
GTAGithub几何感知注意力多视图Transformer开源项目神经渲染计算机视觉
GTA是一种创新的几何感知注意力机制,旨在提升多视图Transformer的表达能力。这项技术不仅适用于新视角合成和3D场景重建等多视图任务,还可应用于图像生成等2D任务。项目提供了GTA在CLEVR-TR和MSN-Hard数据集上的官方实现代码,并展示了其在ImageNet图像生成中的应用。通过整合几何信息,GTA使Transformer更有效地处理3D空间关系,从而显著提高多视图任务的性能表现。
dit-base-finetuned-rvlcdip - 基于自监督学习的文档图像转换模型应用
Document Image TransformerGithubHuggingfaceRVL-CDIP开源项目文档分类模型自我监督学习视觉编码器
Document Image Transformer 是一种基于 Transformer 的模型,专为自监督学习而设计,通过大量文档图像来学习图像的内在表示。经过 RVL-CDIP 数据集的细调,该模型适用于文档图像分类、表格检测和文档布局分析等任务。通过在预训练编码器上添加线性层,可以灵活实现不同任务的目标。模型将图像划分为16x16像素固定块,并使用离散 VAE 编码器的视觉 token 进行预测。该技术解决方案在灰度图像分类中表现出色,尤其是在细分类别的文档图像任务中。
UniTR - 多模态变换器网络推动3D感知进展
3D感知BEV分割GithubUniTR多模态转换器开源项目目标检测
UniTR是一种新型统一多模态变换器网络,用于3D感知任务。它通过共享权重处理相机和激光雷达等多传感器数据,实现高效多模态融合。在nuScenes数据集上,UniTR在3D目标检测和BEV地图分割任务中均达到最新水平,且降低推理延迟。该研究为提升自动驾驶系统的感知能力提供了新思路。
CrossFormer - 融合跨尺度注意力的高效视觉Transformer
CrossFormer++Github图像分类开源项目目标检测视觉Transformer跨尺度注意力
CrossFormer++是一种创新的视觉Transformer模型,通过跨尺度注意力机制解决了不同尺度对象特征间建立关联的问题。该模型引入跨尺度嵌入层和长短距离注意力等设计,并采用渐进式分组策略和激活冷却层来平衡性能与计算效率。在图像分类、目标检测和语义分割等视觉任务中表现优异,尤其在密集预测任务中效果显著。CrossFormer++为计算机视觉领域提供了一种灵活高效的新型架构。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号