Project Icon

ISBNet

高效准确的3D点云实例分割网络实现先进场景理解

ISBNet是一种创新的3D点云实例分割网络,采用实例感知采样和框感知动态卷积技术。通过多任务学习方法和轴对齐边界框预测,ISBNet在ScanNetV2、S3DIS和STPLS3D等数据集上实现了领先的分割精度,同时保持快速推理速度。该方法有效解决了密集场景中相同语义类别物体的分割问题,为3D场景理解提供了新的解决方案。

EfficientSAM - 基于掩码预训练的实时图像分割模型
EfficientSAMGithub分割模型图像处理开源项目深度学习计算机视觉
EfficientSAM是一个基于掩码图像预训练的通用图像分割模型,支持点提示、框提示、全景分割和显著性检测等功能。该模型在保持高精度的同时显著提高了处理速度,已集成到多个开源工具中。项目提供在线演示和Jupyter notebook示例,便于研究人员和开发者快速上手和应用。
HorNet - 基于递归门控卷积的高效视觉骨干网络
GithubHorNetImageNetPyTorchRecursive Gated Convolution开源项目高阶空间交互
HorNet是一个基于递归门控卷积的视觉骨干网络家族,专注于高效的高阶空间交互。项目提供了多个在ImageNet数据集上训练和评估的模型,如HorNet-T、HorNet-S和HorNet-B,广泛应用于图像分类和点云理解等领域。项目页面提供详细的训练和评估说明及模型下载链接。HorNet在提升图像和3D对象分类精度方面表现优异,是计算机视觉研究中的重要工具。
Fast-BEV - 新一代鸟瞰视角感知系统
Fast-BEVGithub开源项目深度学习自动驾驶计算机视觉鸟瞰图感知
Fast-BEV是一种先进的鸟瞰视角感知系统,专注于3D目标检测和BEV语义分割。该项目针对自动驾驶等应用场景进行了优化,提供多种模型配置和CUDA、TensorRT加速支持。Fast-BEV不仅在性能和速度方面表现卓越,还提供了完整的安装指南、数据准备流程和训练方法,为研究人员和开发者提供了强大的工具。作为领先的感知算法和计算机视觉解决方案,Fast-BEV为鸟瞰视角感知任务设立了新的标准。
3D-BoundingBox - 使用深度学习与几何方法,实现高效的3D边界框估计
3D Bounding BoxGithubKittiPyTorchYOLOv3开源项目深度学习
项目提供基于PyTorch的深度学习解决方案,通过结合YOLOv3和2D-3D几何转换,实现高效3D边界框估计。主要功能包括下载预训练权重、通过视频和图像数据进行模型推理和训练,依赖PyTorch和其他深度学习库。项目未来计划是在Kitti数据集上训练自定义YOLO网络和姿态可视化。目前版本每帧处理时间约为0.4秒,并计划进一步提升速度。文档中详细介绍了模型训练步骤及实际应用操作。
Cam2BEV - 深度学习实现多视角车载图像到语义分割鸟瞰图转换
Cam2BEVGithub开源项目深度学习自动驾驶语义分割鸟瞰图
该项目提出一种深度学习方法,将多个车载摄像头图像转换为语义分割鸟瞰图(BEV)。采用合成数据集训练,可良好泛化到真实场景。方法使用语义分割图像作为输入,缩小了仿真与真实数据的差距,无需手动标注。项目开源了代码、网络架构和数据集,适用于自动驾驶环境感知研究。相比传统逆透视映射,该方法在处理3D物体和遮挡区域时表现更佳。
nn_vis - 创新3D可视化技术助力神经网络分析
3D可视化技术Github开源项目批量归一化神经网络可视化边缘捆绑重要性估计
该项目开发了一种创新的3D神经网络可视化技术。通过批量归一化、微调和特征提取,估算网络各部分重要性。结合边缘捆绑、光线追踪等方法,构建神经网络的3D表示模型。这一技术验证了重要性估计的有效性,并为深入理解复杂神经网络架构开辟了新途径。
upernet-swin-large - Swin Transformer 与 UperNet 结合的语义分割方法
GithubHuggingfaceSwin TransformerUperNet开源项目模型特征金字塔网络视觉语义分割
UperNet 利用 Swin Transformer 大型网络进行语义分割,框架包含组件如主干网络、特征金字塔网络及金字塔池模块。可与各种视觉主干结合使用,对每个像素预测语义标签,适合语义分割任务,并可在 Hugging Face 平台找到特定任务的优化版本。通过 Swin Transformer 与 UperNet 的结合,用户可在场景理解中实现精确的语义分割。
FastSAM - 全景分割模型 速度提升50倍且性能可比SAM
AI模型Fast Segment AnythingGithub图像分割开源项目深度学习计算机视觉
FastSAM是一款基于CNN的高效全景分割模型。仅使用SAM数据集2%的数据,就实现了与SAM相当的性能,同时运行速度提升50倍。支持一切模式、文本提示、框选和点选等多种交互方式。在边缘检测、目标检测等下游任务中,FastSAM展现出优异的零样本迁移能力,为计算机视觉研究开辟新方向。
ReCon - 融合对比和生成方法的3D表示学习框架
3D表示学习GithubReCon少样本学习开源项目点云分类零样本学习
ReCon是一个融合对比学习和生成式预训练的3D表示学习框架,有效解决了数据不足和表示过拟合问题。该框架在3D点云分类、少样本学习和零样本迁移等任务中表现出色,在ScanObjectNN数据集上达到91.26%的分类准确率。ReCon展现了在3D表示学习领域的先进性能,为相关研究提供了新的思路。
3DitScene - 通过语言指令编辑3D场景的创新技术
3DitSceneGithub场景编辑开源项目计算机视觉语言引导高斯散射
3DitScene是一个开源项目,开发了基于语言引导的解耦高斯散射技术来编辑3D场景。该技术允许通过自然语言指令编辑场景中的特定对象,包括移动、旋转或删除。项目保持场景整体一致性,同时支持生成新视角。开发者提供了安装指南和使用说明,并在Hugging Face平台上部署了演示,方便研究人员和开发者探索这一3D场景编辑技术。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号