Project Icon

SOLO

无框的实例分割算法,可直接输出实例掩码和类别概率,并具备高质量掩码预测和顶级性能

SOLO项目实现了SOLO和SOLOv2两种完全无框的实例分割算法,可直接输出实例掩码和类别概率,并具备高质量掩码预测和顶级性能。该项目基于mmdetection,支持多GPU和单GPU训练,并提供多种预训练模型下载,包括轻量级模型。对于研究人员来说,这些工具显著提高了分割精度和训练速度,适用于各种应用场景。

Segment-Any-Point-Cloud - 视觉基础模型驱动的通用点云序列分割框架
GithubSeal开源项目点云分割神经网络自监督学习计算机视觉
Seal是一种自监督学习框架,通过利用视觉基础模型的知识来分割多样化的点云序列。该框架在表示学习阶段强调空间和时间一致性,实现了高效的跨模态知识迁移。Seal无需依赖2D或3D标注,直接从视觉模型中提取知识,展现出优秀的可扩展性、一致性和泛化能力。它可应用于各类点云数据集,包括真实与合成、高低分辨率、大小规模以及干净和受损数据。
Entity - 开源工具箱实现开放世界高质量图像分割
EntitySegGithub图像分割开放世界分割开源工具箱开源项目高质量分割
EntitySeg是一个专注于开放世界和高质量图像分割的开源工具箱。它集成了多种前沿算法,如开放世界实体分割、超高分辨率图像分割和类别无关半监督学习。该工具箱支持多个研究项目,应用范围广泛,从基础图像分割到复杂场景理解。EntitySeg为计算机视觉领域的研究人员和开发者提供了实用的工具和资源。
BackgroundMattingV2 - 实时高分辨率背景抠图技术的创新突破
Github实时处理开源项目深度学习背景抠图计算机视觉高分辨率
该项目开发了实时高分辨率背景抠图技术,通过额外背景图像实现高质量抠图。研究展示了创新的神经网络架构,并提供新数据集。成果获CVPR 2021最佳学生论文荣誉提名,推动视频处理和图像编辑技术发展。
RegionSpot - 基于深度学习的智能区域识别开源项目
AI模型GithubRegionSpot区域检测图像识别开源项目计算机视觉
RegionSpot是一个开源计算机视觉项目,专门用于识别图像中的任意区域。该项目利用深度学习技术,通过文本提示或边界框输入来定位和分割图像中的特定区域。RegionSpot提供了多个预训练模型,在罕见物体检测中实现了26.3%的框AP和23.4%的掩码AP。项目支持自定义词汇,并提供简单的API接口,适用于多种计算机视觉应用场景。
ritm_interactive_segmentation - 迭代训练与掩码引导的交互式图像分割方法
Github交互式图像分割开源项目神经网络计算机视觉迭代训练遮罩引导
该项目提出了一种基于掩码引导的迭代训练方法,用于交互式图像分割。这种方法能够分割新对象,也可从外部掩码开始修正。采用简单前馈模型,无需额外优化即可达到先进性能。项目提供训练和测试代码、预训练模型及交互式演示,支持多种数据集和评估指标。
Segment-Any-Anomaly - 基于混合提示正则化的零样本异常分割方法
GithubSAA+图像处理开源项目异常分割计算机视觉零样本学习
Segment-Any-Anomaly项目提出了一种基于混合提示正则化的零样本异常分割方法。该方法通过适配Grounding DINO和Segment Anything等基础模型,实现了对多种异常检测数据集的高效分割。项目在MVTec-AD、VisA等公开数据集上展现出优秀性能,并在VAND工作坊竞赛中取得佳绩。仓库包含完整代码实现、演示和使用说明,便于研究者复现和应用。
DIS - 高精度二值图像分割方法,优化模型与即将发布的V2.0数据集
DIS datasetDichotomous Image SegmentationECCV 2022GithubIS-NetU2-Net开源项目
简要介绍高精度二值图像分割(DIS)任务的新进展,包括ECCV 2022接受的论文、DIS5K数据集V1.0和即将发布的V2.0版本。DIS任务应用于3D建模、图像编辑、艺术设计、静态图像动画和增强现实等领域。目前发布的为学术版本模型,用户可通过链接下载预训练权重进行推理。优化模型和更全面的数据集即将发布,敬请关注。
XMem2 - 少量标注实现高精度视频分割的开源工具
GithubXMem++交互式标注人工智能开源项目视频分割计算机视觉
XMem2是一个开源的交互式视频分割工具,通过永久记忆模块和创新帧选择算法,只需少量标注即可实现高质量分割。它能以30+ FPS的速度处理物体部件、流体、可变形物体等复杂场景。XMem2提供改进的GUI和Python接口,适用于电影制作等领域。项目还包含PUMaVOS数据集,涵盖23个具挑战性的视频分割场景。
YOLOMagic - 增强YOLOv5视觉任务框架功能与用户体验
GithubYOLOv5图像推理开源项目注意力机制网络模块视觉任务
YOLO Magic🚀 是一个基于YOLOv5的扩展项目,为视觉任务提供更强大的功能和简化的操作。该项目引入了多种网络模块,如空间金字塔模块、特征融合结构和新型骨干网络,并支持多种注意力机制。通过直观的网页界面,无需复杂的命令行操作即可轻松进行图像和视频推理。无论是初学者还是专业人员,YOLO Magic🚀都能提供出色的性能、强大的定制能力和广泛的社区支持。
darknet - 开源实时目标检测框架及YOLO算法
DarknetGithubYOLO开源项目目标检测神经网络计算机视觉
Darknet是一个开源神经网络框架,为YOLO实时目标检测系统提供基础。最新的YOLOv7算法在5-160 FPS范围内性能优异,超越了同类检测器。项目支持Linux和Windows平台,提供预训练模型、详细构建指南和命令行操作接口,方便用户进行目标检测、模型训练等任务。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号