Project Icon

SOLO

无框的实例分割算法,可直接输出实例掩码和类别概率,并具备高质量掩码预测和顶级性能

SOLO项目实现了SOLO和SOLOv2两种完全无框的实例分割算法,可直接输出实例掩码和类别概率,并具备高质量掩码预测和顶级性能。该项目基于mmdetection,支持多GPU和单GPU训练,并提供多种预训练模型下载,包括轻量级模型。对于研究人员来说,这些工具显著提高了分割精度和训练速度,适用于各种应用场景。

segment-anything - 革命性AI模型实现高效图像分割
AI模型GithubSegment Anything图像分割开源项目深度学习计算机视觉
Segment Anything是Meta AI Research开发的图像分割模型,能通过简单输入生成高质量物体遮罩。该模型经过大规模数据训练,具备强大的零样本分割能力。它提供多种版本,支持ONNX导出,并附有示例和文档,便于集成应用。
LeYOLO - 可扩展高效的目标检测CNN架构
COCO数据集GithubLeYOLO开源项目目标检测神经网络计算效率
LeYOLO是一种新型目标检测模型系列,通过创新的CNN架构设计实现了计算效率与准确性的优化平衡。该模型引入高效主干网络缩放、快速金字塔架构网络和解耦网络中的网络检测头,大幅降低计算负载。在COCO验证集上,LeYOLO-Small仅使用4.5 GFLOP就达到38.2%的mAP,比YOLOv9-Tiny减少42%计算量。LeYOLO系列具有强大可扩展性,适用于从超低计算需求(<1 GFLOP)到高效高性能(>4 GFLOPs)的多种场景。
EfficientSAM - 基于掩码预训练的实时图像分割模型
EfficientSAMGithub分割模型图像处理开源项目深度学习计算机视觉
EfficientSAM是一个基于掩码图像预训练的通用图像分割模型,支持点提示、框提示、全景分割和显著性检测等功能。该模型在保持高精度的同时显著提高了处理速度,已集成到多个开源工具中。项目提供在线演示和Jupyter notebook示例,便于研究人员和开发者快速上手和应用。
SLiMe - 基于Stable Diffusion的单样本图像分割方法
GithubPyTorchSLiMeStable Diffusion图像分割开源项目深度学习
SLiMe是一种基于Stable Diffusion的单样本图像分割方法,通过单个训练样本实现准确分割。项目提供PyTorch实现,包含训练、测试和数据处理指南。SLiMe在PASCAL-Part和CelebAMask-HQ数据集上表现优异,为图像分割研究提供新思路。项目开源代码,支持自定义数据集训练和测试。SLiMe采用图像分块处理技术,提高分割精度。研究者可基于此探索更多单样本学习应用场景。
QueryInst - 简洁高效的实例分割策略
COCO数据集GithubQueryInstmmdetection实例分割开源项目目标检测
QueryInst是一种由动态掩码头并行监督驱动的查询实例分割方法,在准确性和速度上具有显著优势。该项目涵盖对象检测、实例分割和视频实例分割等多种实例级别识别任务,并提供详细的功能介绍和模型训练指导。目前本项目仍在积极开发中,计划扩展至更多实例级别识别任务。
YOLOv6 - 高性能目标检测框架支持多场景应用
GithubYOLOv6开源项目模型训练深度学习目标检测计算机视觉
YOLOv6是一款高效的目标检测框架,提供从轻量级到大型的多种模型选择。它在速度和精度上取得平衡,支持量化和移动端部署,适用于各种实时检测场景。最新版本还引入了分割功能,扩展了应用范围。YOLOv6不仅适用于工业领域,还可广泛应用于安防、交通等多个领域。
mmyolo - YOLO算法与实时对象识别工具包
GithubMMYOLOOpenMMLabYOLO系列算法实例分割开源项目目标检测
MMYOLO是一个基于PyTorch和MMDetection的开源工具包,专注于YOLO系列算法,适用于对象检测和旋转对象检测任务。该项目提供统一的基准测试、详细文档和模块化设计,便于用户构建和扩展模型。支持YOLOv5实例分割和YOLOX-Pose等功能,显著提升训练速度,并在RTMDet模型上实现了先进的性能。
solo-learn - 使用自监督学习进行无监督视觉表征的方法与技巧
GithubPyTorch Lightningsolo-learn开源项目无监督自监督学习视觉表示学习
solo-learn库基于PyTorch Lightning,提供多种自监督方法用于无监督视觉表征学习。该库包含全面的训练技巧和多种数据处理、评估方式,以提高训练效果和可重复性。其主要特点有快速的数据处理、自定义模型检查点、线上和线下的K-NN评估。库内包含灵活的数据增强、可视化功能,并不断更新方法和改进教程,使模型训练和调试更加高效简便。
SSD-Tensorflow - 目标检测的单一网络实现
COCOGithubPascal VOCSSDTensorFlowVGG开源项目
SSD是一种高效的目标检测框架,利用单一网络结构实现物体识别。该项目提供了TensorFlow的重实现版本,支持VGG架构并且易于扩展到其他变种,如ResNet和Inception。项目包括数据集接口、网络定义和数据预处理模块,用户可以通过提供的脚本进行模型训练和评估,支持Pascal VOC数据集。代码和示例帮助用户快速上手并应用于实际检测任务。
MP-Former - 基于mask-piloted机制的先进图像分割模型
CVPR 2023GithubMP-FormerMask2FormerTransformer图像分割开源项目
MP-Former是一种新型图像分割transformer模型,采用mask-piloted机制改进分割效果。项目包含训练和评估代码,适用于实例分割和全景分割任务。基于Mask2Former架构开发,在COCO数据集上展现出良好性能。项目提供了复现论文实验的脚本,为计算机视觉研究提供参考实现。MP-Former在CVPR 2023上发表,提供了no noise和all-layer MP训练设置,12轮训练后在实例分割任务上达到40.15 AP。项目代码开源,安装过程与Mask2Former相同,便于研究者快速上手和进行进一步探索。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号