Project Icon

MotionBERT

多任务人体运动表征学习框架

MotionBERT是一个多任务人体运动表征学习框架,整合了3D人体姿态估计、基于骨骼的动作识别和人体网格恢复等任务。该项目提供预训练模型和下游任务实现,支持自定义视频推理和生成以人为中心的视频表征。MotionBERT在多个基准测试中展现出优异性能,为人体运动分析研究提供了一个统一且高效的解决方案。

MotionGPT - 构建多任务的人体动作与语言统一模型
GithubMotionGPT人体动作人机交互多模态数据开源项目模型训练
MotionGPT是一种整合人体动作和语言的统一模型,专注于两种模态间的语义耦合学习。在诸多人体动作任务中表现优异,包括文本驱动动作生成、动作标题生成及动作预测。该模型结合预训练与指令性微调,能高效处理多种动作相关任务,是动作语言模型的新代表。此外,其零拍技术使其能识别新词汇并生成相应动作,突显处理复杂场景的能力。
MotionLLM - 融合视频和动作数据的人类行为理解先进AI模型
GithubMotionLLM人工智能人类行为理解多模态学习大语言模型开源项目
MotionLLM是一个人类行为理解框架,通过融合视频和动作序列数据来分析人类行为。该项目采用统一的视频-动作训练策略,结合粗粒度视频-文本和细粒度动作-文本数据,以获得深入的时空洞察。项目还包括MoVid数据集和MoVid-Bench评估工具,用于研究和评估人类行为理解。MotionLLM在行为描述、时空理解和推理方面展现出优越性能,为人机交互和行为分析研究提供了新的方向。
MimicMotion - 基于AI的高质量人体动作视频生成框架
AIGithubMimicMotion人体动作开源项目深度学习视频生成
MimicMotion是一个创新的视频生成框架,可基于任意动作指导生成高质量的长视频。该项目采用置信度感知的姿态引导技术,提高了时间平滑性和模型鲁棒性。通过区域损失放大和渐进式潜在融合策略,MimicMotion有效解决了图像失真问题,并能以较低的资源消耗生成长视频。这一技术在视频质量、控制性和生成长度等方面显著优于现有方法,为人体运动视频生成领域开辟了新的可能性。
MotionGPT - 文本转动作生成的通用平台
GithubLLaMAMotionGPTPyTorchfinetuning开源项目模型评估
MotionGPT是通过微调大型语言模型(LLMs)来实现通用运动生成的开源项目。项目提供详细的安装指南、预训练模型及数据集应用实例,支持高效的文本到动作转换及生成。用户可以轻松实现姿态可视化和SMPL网格渲染。项目页面详细介绍了多种使用场景,适用于各种运动生成需求。
Motion-X - 丰富表现力的3D全身人体动作数据集
GithubMotion-XSMPL-X人体动作数据集多模态开源项目表情动作
Motion-X是一个大规模的3D全身人体动作数据集,包含15.6M个全身姿势和81.1K个动作片段的SMPL-X参数注释。数据集提供动作标签、文本标签及RGB视频、音频等多模态信息。Motion-X支持文本驱动的3D人体动作生成、全身网格恢复等多种任务。通过整合现有数据集并添加在线视频数据,Motion-X为人体动作研究提供了丰富的资源。
T2M-GPT - 基于Pytorch的从文本描述到人类动作生成的AI技术
GithubT2M-GPT三维模型人体运动生成开源项目深度学习视觉结果
T2M-GPT, 领先的AI技术, 通过解析文本生成精准的人类动作,已在2023年IEEE/CVF会议展示认可。包含易用的安装、快速指南及训练评估资料,支持多种3D动作数据集。
Realtime_Multi-Person_Pose_Estimation - 实时多人人体姿态估计的开源实现
CVPRGithubMSCOCO Keypoints ChallengeOpenPosePart Affinity FieldsRealtime Multi-Person Pose Estimation开源项目
该项目展示了一种无需人体检测器的实时多人人体姿态估计方法,曾获2016年MSCOCO关键点挑战赛冠军等多个奖项。项目提供了C++、TensorFlow、Pytorch等多种实现版本,适用于不同应用场景。页面还包括详细的测试与训练步骤,以及相关的代码库和资源链接,适合研究人员和开发者使用。
MocapNET - 基于RGB图像的3D人体姿态实时估计
3D姿态估计GithubMocapNETRGB图像Tensorflow实时性能开源项目
MocapNET项目通过2D关节估计,将单目RGB图像转换为3D人体姿态,实现实时估计。它采用NSRM表示法、新的人体方位分类器和复合神经网络,能够在显著遮挡情况下精确恢复人体姿态。通过逆运动学解算器,MocapNET显著提升了人体姿态估计的准确性。最新的MocapNET v4版本用Python重写,支持3D凝视和BVH面部配置检索,并提供一键Google Collab部署和Blender 3D编辑器插件。项目不断更新,旨在提高其对社区的实用性和可访问性。
MotionCLR - 人体动作生成与编辑,基于注意力机制实现训练无关的操作
AI工具MotionCLR注意力机制编辑能力自注意力机制运动生成
MotionCLR通过理解注意力机制实现人体动作的生成和编辑,无需训练条件。其模型结合自我注意力与交叉注意力,提供灵活的动态编辑功能,包括动作强调、替换及基于示例的生成。实验结果显示其在生成和编辑能力上表现卓越,并具备良好的解释性。
MotionCtrl - 视频生成中的动作控制统一解决方案
AIGithubMotionCtrl动作控制开源项目腾讯视频生成
MotionCtrl是一个统一的视频生成动作控制系统,可独立调节生成视频中的相机和物体运动。该项目兼容SVD、VideoCrafter和AnimateDiff等多个视频生成模型,并提供训练代码、推理脚本和在线演示。通过MotionCtrl,研究人员和内容创作者能够更精确地控制生成视频的动作效果,从而提高视频生成的质量和灵活性。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号