Project Icon

yolov7

实时目标检测算法实现性能新突破

YOLOv7是一款高效的实时目标检测算法,在MS COCO数据集上实现了51.4% AP的性能。该项目提供多种模型变体,包括YOLOv7-X和YOLOv7-W6等,适用于不同应用场景。此外,YOLOv7还具备姿态估计和实例分割功能,支持多GPU训练、迁移学习和模型导出,是一个全面的目标检测解决方案。

yolov8-streamlit-detection-tracking - YOLOv8和Streamlit打造的实时目标检测追踪应用
GithubStreamlitYOLOv8实时目标检测对象追踪开源项目计算机视觉
该项目基于YOLOv8和Streamlit开发,提供实时目标检测和追踪功能的Web应用。支持RTSP、UDP、YouTube等多种视频源,以及静态视频和图像处理。用户可通过直观界面调整模型参数,查看可视化结果并下载。项目展示了计算机视觉与Web应用的集成,适合学习和演示目的。
yolov8m-building-segmentation - 卫星图像中YOLOv8建筑物分割的精准实现
GithubHuggingfaceYOLOv8ultralyticsplus卫星建筑分割图像分割开源项目模型
该模型专注于通过Yolov8m实现卫星图像中建筑物的精准分割,借助PyTorch以提高分析准确性,mAP@0.5的精度分别为0.62261和0.61275。使用ultralyticsplus库及Python示例可实现快速图像加载与预测,适合高精度建筑物分割的应用需求。
efficientdet - EfficientDet目标检测模型的PyTorch实现
COCO数据集EfficientDetGithub开源项目深度学习目标检测计算机视觉
本项目提供了EfficientDet目标检测模型的PyTorch实现。支持COCO数据集的训练、评估和测试,在COCO val2017上达到0.314 mAP。包含预训练权重、视频测试功能和使用说明。适合研究人员和开发者参考使用。
YOLOMagic - 增强YOLOv5视觉任务框架功能与用户体验
GithubYOLOv5图像推理开源项目注意力机制网络模块视觉任务
YOLO Magic🚀 是一个基于YOLOv5的扩展项目,为视觉任务提供更强大的功能和简化的操作。该项目引入了多种网络模块,如空间金字塔模块、特征融合结构和新型骨干网络,并支持多种注意力机制。通过直观的网页界面,无需复杂的命令行操作即可轻松进行图像和视频推理。无论是初学者还是专业人员,YOLO Magic🚀都能提供出色的性能、强大的定制能力和广泛的社区支持。
YOLOv8-TensorRT-CPP - 用C++和TensorRT实现高效的YOLOv8模型推理
CPPGithubTensorRTYOLOv8开源项目深度学习目标检测
本文介绍了如何使用TensorRT的C++ API实现YOLOv8模型的推理,支持目标检测、语义分割和身体姿态估计,包括系统要求、安装步骤、模型转换和项目构建方法。内容中强调了在GPU上运行推理的注意事项和性能基准测试,提供了从PyTorch到ONNX模型转换的详细步骤,是开发计算机视觉应用的参考资料。
YOLO-Patch-Based-Inference - 补丁式推理优化小物体检测和实例分割
GithubYOLO实例分割开源项目深度学习目标检测计算机视觉
这个Python库实现了基于补丁的推理方法,用于改进小物体检测和实例分割。它支持多种Ultralytics模型,包括YOLOv8/v9/v10、FastSAM和RTDETR,可用于对象检测和实例分割任务。库提供了推理结果可视化功能,并通过优化的补丁处理和结果合并提高了小物体检测准确性。项目还包含交互式笔记本和教程,方便用户学习和使用。
FCOS - 完全卷积单阶段对象检测技术
FCOSGithubResNet-50卷积神经网络开源项目性能提升目标检测
FCOS算法是一种完全卷积的单阶段对象检测方法,通过避免使用锚点框,提高了检测性能和速度。在COCO minival数据集上,FCOS实现了46FPS和40.3的AP评分,并在各种模型和硬件上表现出色,包括ResNe(x)t和MobileNet等。与Faster R-CNN相比,FCOS在ResNet-50平台上表现更佳(38.7对36.8的AP),且训练和推理时间更短。该项目已基于Detectron2实现,并引入了多项优化和改进。
PaddleDetection - 目标检测套件支持多任务开发部署
GithubPaddleDetectionPaddlePaddle开源项目深度学习目标检测计算机视觉
PaddleDetection是基于PaddlePaddle的目标检测开发套件,支持通用、小目标、旋转框等多种检测任务。它提供PP-YOLOE、PP-PicoDet等高性能模型和丰富的模型组件,注重产业应用,帮助开发者实现从数据准备到模型部署的全流程开发。
yolov5-deepsort-tensorrt - 基于YOLOv5和DeepSORT的Jetson设备目标跟踪系统
DeepSortGithubJetsonTensorRTYolov5开源项目目标跟踪
这个项目是YOLOv5和DeepSORT算法在Jetson设备上的C++实现,针对Jetson Xavier NX和Jetson Nano进行了优化。系统能够高效跟踪多个人头目标,在Jetson Xavier NX上处理70多个目标时可达到10 FPS。项目包含环境配置、模型生成和运行指南,支持自定义模型,并提供了不同YOLOv5版本的兼容性说明。适合需要在边缘设备上进行高性能目标跟踪的应用场景。
yolov5m-license-plate - 车牌检测的YOLOv5模型支持Pytorch适用于多种视觉任务
GithubHuggingfacePyTorchYOLOv5开源项目模型深度学习目标检测车牌识别
YOLOv5m-license-plate项目提供基于YOLOv5技术的车牌检测模型,利用Pytorch进行对象检测,适用于多种计算机视觉任务。开发者可运用简单的Python代码实现精准车牌识别,并支持通过自定义数据集进行微调以提升效果。在keremberke数据集上的精度高达0.988,适合快速、可靠的车牌检测应用。访问项目主页获取更多信息和下载。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号