Project Icon

Renate

自动神经网络再训练的持续学习解决方案

Renate是一个用于神经网络模型自动再训练的Python库,采用持续学习和终身学习算法。基于PyTorch和Lightning构建,通过Syne Tune实现超参数优化。该工具专门解决数据分布变化引起的灾难性遗忘问题,提升模型对新数据的适应能力。Renate支持云端部署,适合实际再训练场景,并提供便捷的高级超参数优化功能。

continual-learning - PyTorch 在三种不同场景中实现各种持续学习方法
Continual LearningGithubNeurIPSPyTorchSynaptic Intelligenceincremental learning开源项目
此项目实现了在增量学习场景中的PyTorch深度神经网络实验,支持学术设置下的分类问题,且可进行更加灵活的无任务增量学习实验。项目提供了演示脚本和详细的安装指导,适合多种经典方法的性能对比和自定义实验。
Ren - 智能领导力培训系统
AI工具AI教练Ren个性化指导组织洞察领导力发展
Ren是一种基于AI的领导力培训系统,为企业提供个性化的领导力发展方案。该系统能理解企业文化、目标和团队动态,为员工提供全天候的保密辅导,帮助他们应对棘手对话、增强团队协作,并促进个人成长。Ren可同时为大量员工提供培训,并生成组织洞察报告,同时确保员工隐私。该系统融合了先进AI技术和丰富的高管培训经验,为各层级员工提供及时、定制化的指导。
regnety_120.sw_in12k_ft_in1k - 高级图像分类模型,优化大规模数据集的性能
GithubHuggingfaceRegNetY图像分类开源项目数据集模型特征提取预训练
RegNetY-12GF模型致力于图像分类,先在ImageNet-12k上预训练,再在ImageNet-1k上微调。其结构支持多项增强功能,如随机深度和梯度检查点,提高模型准确性和效率。基于timm库实现,广泛用于特征图提取和图像嵌入,适用于多种图像处理场景。
Reinvent - 分子设计与优化的开源人工智能工具
GPUGithubPythonREINVENT分子设计开源项目机器学习
REINVENT 3.2是一个开源的分子设计与优化工具,结合深度学习和强化学习技术实现分子生成和优化。该基于Python的项目支持多种运行模式,使用JSON配置文件控制,并利用CUDA加速的GPU进行计算。REINVENT 3.2提供详细的安装指南、系统要求和使用教程,支持Jupyter notebook交互式使用,便于研究人员快速上手和实验。此外,项目还包含单元测试框架,可广泛应用于药物研发和材料设计等领域的分子设计任务。
continual-learning-baselines - 综合持续学习策略基准与评估平台
AvalancheContinual LearningGithub基准测试实验开源项目模型性能
该项目提供了一套持续学习策略和基线示例,基于Avalanche库实现多种算法,如Less-Forgetful Learning和Elastic Weight Consolidation。项目在Permuted MNIST、Split CIFAR-100等数据集上进行了评估,可重现原始论文结果或自定义参数。这为持续学习研究提供了可靠的基准平台,便于比较不同策略的性能。
returnn - 多GPU优化的Theano/TensorFlow循环神经网络框架
GithubLSTMRETURNN多GPU环境开源项目神经网络训练速度
RETURNN是一个基于Theano和TensorFlow的现代循环神经网络框架,优化于多GPU环境下的快速可靠训练。其主要特点包括简便的配置与调试、支持多种实验模型,以及高效的训练和解码速度。项目还支持小批量训练、序列分块训练、长短期记忆网络、多维LSTM和大数据集内存管理,广泛应用于机器翻译和语音识别领域。RETURNN提供详尽的文档和使用教程,并通过StackOverflow标签提供社区支持。
relora - 使用ReLoRA实现高效深度学习模型训练
GithubPEFTPyTorchReLoRAflash attention开源项目训练
ReLoRA项目通过低秩更新实现高效深度学习训练,兼容Python 3.10+和PyTorch 2.0+,支持更大的微批次大小。用户可通过执行预处理和不同配置的训练脚本,达到高效分布式训练,并支持cosine重启调度和多GPU配置。项目涵盖了预热训练和ReLoRA重启,适用于各种规模的模型训练。
Hypernets - 自动机器学习通用框架 支持多种算法与优化技术
AutoMLGithubHypernets开源项目机器学习神经架构搜索超参数优化
Hypernets作为一个通用AutoML框架,能够为多种机器学习框架和库提供自动优化工具。它不仅支持TensorFlow、Keras、PyTorch等深度学习框架,还兼容scikit-learn、LightGBM、XGBoost等机器学习库。该框架集成了多种先进的单目标和多目标优化算法,并引入抽象搜索空间表示,满足超参数优化和神经架构搜索的需求,从而适应各类自动机器学习场景。
PyContinual - 多任务持续学习的开源Python框架
GithubPyContinual开源项目持续学习神经网络自然语言处理迁移学习
PyContinual是一个开源的持续学习框架,支持语言和图像多种任务类型。框架包含40多种基线方法,可进行任务增量和领域增量学习。它具有易用性和可扩展性,允许研究者快速更改实验设置和添加自定义组件。PyContinual持续集成最新研究成果,提供最新基准测试结果,为持续学习研究提供了全面的实验平台。
avalanche - 基于 PyTorch 的持续学习开源库
AvalancheContinual LearningGithubPytorch开源开源项目机器学习
Avalanche 是基于 PyTorch 的持续学习开源库,提供快速原型设计、训练和评估工具。其模块包括数据处理、模型训练、评估和日志记录,帮助研究人员提高代码效率和研究影响力。简单示例和教程使用户快速上手,社区支持持续改进库功能。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号