Project Icon

WinClip

先进的零样本和少样本异常检测算法

WinCLIP是计算机视觉领域的创新零样本和少样本异常检测算法,专注于异常分类和异常分割。该方法在MVTec-AD和VisA数据集上表现出色,在图像级和像素级异常检测任务中均展现优异性能。项目提供完整实现代码,包含环境配置、数据集准备和结果复现指南,为研究人员和开发者提供重要参考,推动了异常检测技术的发展。

SupContrast - 监督对比学习框架增强视觉表征
GithubSupContrast图像分类对比学习开源项目损失函数监督学习
SupContrast是一个开源的监督对比学习框架,致力于提升视觉表征学习效果。该项目实现了监督对比学习和SimCLR算法,在CIFAR数据集上展现出色性能。它提供简洁的损失函数实现,支持自定义数据集,并附有详细运行指南和可视化结果。在ImageNet上,SupContrast实现了79%以上的Top-1准确率。这一工具为计算机视觉领域的研究和应用提供了重要支持。
chinese-clip-vit-huge-patch14 - 基于ViT-H/14和RoBERTa的中文图文对比学习模型
Chinese-CLIPGithubHuggingface中文数据集图像编码器开源项目文本编码器检索模型
chinese-clip-vit-huge-patch14是一个基于ViT-H/14和RoBERTa-wwm-large的中文CLIP模型,在大规模中文图文数据上训练,表现卓越。支持在MUGE、Flickr30K-CN和COCO-CN等数据集中的图文检索和零样本分类。提供API实现简便的图文特征提取及相似度计算,详情请参见GitHub仓库。
DFN5B-CLIP-ViT-H-14-378 - 大规模数据筛选优化的视觉语言预训练系统
CLIPGithubHuggingface图像分类开源项目数据过滤网络机器学习模型计算机视觉
DFN5B-CLIP-ViT-H-14-378是一款基于CLIP架构的视觉语言模型,采用数据过滤网络(DFN)技术从43B未筛选的图像-文本对中提取5B高质量数据进行训练。该模型在多项视觉任务中表现优异,平均准确率达70.94%。支持零样本图像分类,可与OpenCLIP框架无缝集成,为计算机视觉和自然语言处理研究提供了高性能的预训练模型基础。
clip-japanese-base - 日语CLIP模型,支持图像和文本的零样本分类与检索
BERTCLIPGithubHuggingface图像分类开源项目文本检索模型视觉任务
该日语CLIP模型由LY Corporation开发,通过大约10亿对图文数据进行训练,适用于图像和文本的零样本分类与检索。该模型采用Eva02-B作为图像编码器,并使用12层BERT作为文本编码器。模型在图像分类中的准确率达到0.89,检索召回率为0.30。在评估中,使用了STAIR Captions和ImageNet-1K等数据集,表现优秀。模型已开源,遵循Apache 2.0协议。
cleanlab - 开源工具自动检测和优化机器学习数据集
Githubcleanlab开源项目数据中心AI数据清理机器学习标签错误检测
cleanlab是一款开源的数据中心AI工具包,能够自动检测机器学习数据集中的标签错误、异常值和重复项等问题。该工具适用于图像、文本和表格等各类数据,并支持所有机器学习模型。除了发现数据问题,cleanlab还可以训练更稳健的模型,评估数据质量。基于可靠的理论基础,cleanlab运行高效,操作简便,是优化数据质量和提升模型性能的实用工具。
owlv2-base-patch16-ensemble - 基于CLIP的开放词汇目标检测模型
CLIPGithubHuggingfaceOWLv2开源项目模型目标检测计算机视觉零样本学习
OWLv2是一个基于CLIP的开放词汇目标检测模型。它使用ViT-B/16和masked self-attention Transformer分别作为图像和文本编码器,通过对比学习训练。该模型支持多文本查询的零样本目标检测,无需预定义类别。OWLv2在开放词汇目标检测任务中表现优异,为计算机视觉研究开辟了新方向。
ViT-L-16-SigLIP-384 - 基于SigLIP的先进视觉语言模型实现零样本图像分类
GithubHuggingfaceSigLIP图像分类开源项目模型深度学习自然语言处理计算机视觉
ViT-L-16-SigLIP-384是一个在WebLI数据集上训练的SigLIP模型,专门用于语言-图像预训练。这个模型支持对比式图像-文本学习和零样本图像分类,已从JAX格式转换为PyTorch,可兼容OpenCLIP和timm库。它在视觉-语言处理方面表现出色,能够应用于多种计算机视觉任务,如图像分类和跨模态检索。
DenseCL - 改进密集预测任务的视觉预训练方法
DenseCLGithub密集预测对比学习开源项目自监督学习视觉预训练
DenseCL是一种自监督视觉预训练方法,通过密集对比学习提升模型在密集预测任务中的表现。该方法实现简洁,核心部分仅需10行代码,适配多种数据增强技术。实验表明,DenseCL在目标检测和语义分割任务中性能显著提升,同时保持训练效率。项目开源了预训练模型和使用指南,便于研究者在视觉任务中应用。
ad_examples - 主动异常发现算法提升异常检测效率
AADGithubPython主动学习开源项目异常检测机器学习
ad_examples是一个异常检测Python库,实现了主动异常发现(AAD)算法。项目包含多种检测技术,涵盖无监督、时间序列和人机交互场景。AAD算法利用专家反馈和集成学习提高检测效率。库提供详细文档和API,适合异常检测研究和应用。
anomaly-detection-resources - 异常检测领域的综合学习资源库
ADBenchGithubPyOD开源项目异常检测数据挖掘机器学习
本项目汇集了异常检测领域的全面学习资源,包括书籍、论文、课程、数据集和工具库。涵盖多变量数据、时间序列和图网络等多种异常检测类型,并提供关键算法、高维数据和集成方法等研究方向的资料。同时列出重要会议和期刊,为异常检测研究者和实践者提供了宝贵的资源库。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号