Awesome Knowledge Distillation
Papers
- Neural Network Ensembles, L.K. Hansen, P. Salamon, 1990
- Neural Network Ensembles, Cross Validation, and Active Learning, Andres Krogh, Jesper Vedelsby, 1995
- Combining labeled and unlabeled data with co-training, A. Blum, T. Mitchell, 1998
- Ensemble Methods in Machine Learning, Thomas G. Dietterich, 2000
- Model Compression, Rich Caruana, 2006
- Dark knowledge, Geoffrey Hinton, Oriol Vinyals, Jeff Dean, 2014
- Learning with Pseudo-Ensembles, Philip Bachman, Ouais Alsharif, Doina Precup, 2014
- Distilling the Knowledge in a Neural Network, Geoffrey Hinton, Oriol Vinyals, Jeff Dean, 2015
- Cross Modal Distillation for Supervision Transfer, Saurabh Gupta, Judy Hoffman, Jitendra Malik, 2015
- Heterogeneous Knowledge Transfer in Video Emotion Recognition, Attribution and Summarization, Baohan Xu, Yanwei Fu, Yu-Gang Jiang, Boyang Li, Leonid Sigal, 2015
- Distilling Model Knowledge, George Papamakarios, 2015
- Unifying distillation and privileged information, David Lopez-Paz, Léon Bottou, Bernhard Schölkopf, Vladimir Vapnik, 2015
- Learning Using Privileged Information: Similarity Control and Knowledge Transfer, Vladimir Vapnik, Rauf Izmailov, 2015
- Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks, Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, Ananthram Swami, 2016
- Do deep convolutional nets really need to be deep and convolutional?, Gregor Urban, Krzysztof J. Geras, Samira Ebrahimi Kahou, Ozlem Aslan, Shengjie Wang, Rich Caruana, Abdelrahman Mohamed, Matthai Philipose, Matt Richardson, 2016
- Paying More Attention to Attention: Improving the Performance of Convolutional Neural Networks via Attention Transfer, Sergey Zagoruyko, Nikos Komodakis, 2016
- FitNets: Hints for Thin Deep Nets, Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, Yoshua Bengio, 2015
- Deep Model Compression: Distilling Knowledge from Noisy Teachers, Bharat Bhusan Sau, Vineeth N. Balasubramanian, 2016
- Knowledge Distillation for Small-footprint Highway Networks, Liang Lu, Michelle Guo, Steve Renals, 2016
- Sequence-Level Knowledge Distillation, deeplearning-papernotes, Yoon Kim, Alexander M. Rush, 2016
- MobileID: Face Model Compression by Distilling Knowledge from Neurons, Ping Luo, Zhenyao Zhu, Ziwei Liu, Xiaogang Wang and Xiaoou Tang, 2016
- Recurrent Neural Network Training with Dark Knowledge Transfer, Zhiyuan Tang, Dong Wang, Zhiyong Zhang, 2016
- Adapting Models to Signal Degradation using Distillation, Jong-Chyi Su, Subhransu Maji,2016
- Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results, Antti Tarvainen, Harri Valpola, 2017
- Data-Free Knowledge Distillation For Deep Neural Networks, Raphael Gontijo Lopes, Stefano Fenu, 2017
- Like What You Like: Knowledge Distill via Neuron Selectivity Transfer, Zehao Huang, Naiyan Wang, 2017
- Learning Loss for Knowledge Distillation with Conditional Adversarial Networks, Zheng Xu, Yen-Chang Hsu, Jiawei Huang, 2017
- DarkRank: Accelerating Deep Metric Learning via Cross Sample Similarities Transfer, Yuntao Chen, Naiyan Wang, Zhaoxiang Zhang, 2017
- Knowledge Projection for Deep Neural Networks, Zhi Zhang, Guanghan Ning, Zhihai He, 2017
- Moonshine: Distilling with Cheap Convolutions, Elliot J. Crowley, Gavin Gray, Amos Storkey, 2017
- Local Affine Approximators for Improving Knowledge Transfer, Suraj Srinivas and Francois Fleuret, 2017
- Best of Both Worlds: Transferring Knowledge from Discriminative Learning to a Generative Visual Dialog Model, Jiasen Lu1, Anitha Kannan, Jianwei Yang, Devi Parikh, Dhruv Batra 2017
- Learning Efficient Object Detection Models with Knowledge Distillation, Guobin Chen, Wongun Choi, Xiang Yu, Tony Han, Manmohan Chandraker, 2017
- Learning Transferable Architectures for Scalable Image Recognition, Barret Zoph, Vijay Vasudevan, Jonathon Shlens, Quoc V. Le, 2017
- Revisiting knowledge transfer for training object class detectors, Jasper Uijlings, Stefan Popov, Vittorio Ferrari, 2017
- A Gift from Knowledge Distillation: Fast Optimization, Network Minimization and Transfer Learning, Junho Yim, Donggyu Joo, Jihoon Bae, Junmo Kim, 2017
- Rocket Launching: A Universal and Efficient Framework for Training Well-performing Light Net, Zihao Liu, Qi Liu, Tao Liu, Yanzhi Wang, Wujie Wen, 2017
- Data Distillation: Towards Omni-Supervised Learning, Ilija Radosavovic, Piotr Dollár, Ross Girshick, Georgia Gkioxari, Kaiming He, 2017
- Parallel WaveNet:Fast High-Fidelity Speech Synthesis, Aaron van den Oord, Yazhe Li, Igor Babuschkin, Karen Simonyan, Oriol Vinyals, Koray Kavukcuoglu, 2017
- Learning from Noisy Labels with Distillation, Yuncheng Li, Jianchao Yang, Yale Song, Liangliang Cao, Jiebo Luo, Li-Jia Li, 2017
- Deep Mutual Learning, Ying Zhang, Tao Xiang, Timothy M. Hospedales, Huchuan Lu, 2017
- Distilling a Neural Network Into a Soft Decision Tree, Nicholas Frosst, Geoffrey Hinton, 2017
- Interpreting Deep Classifiers by Visual Distillation of Dark Knowledge, Kai Xu, Dae Hoon Park, Chang Yi, Charles Sutton, 2018
- Efficient Neural Architecture Search via Parameters Sharing, Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, Jeff Dean, 2018
- Defensive Collaborative Multi-task Training - Defending against Adversarial Attack towards Deep Neural Networks, Derek Wang, Chaoran Li, Sheng Wen, Yang Xiang, Wanlei Zhou, Surya Nepal, 2018
- Distill-and-Compare: Auditing Black-Box Models Using Transparent Model Distillation, Sarah Tan, Rich Caruana, Giles Hooker, Yin Lou, 2018
- Deep Co-Training for Semi-Supervised Image Recognition, Siyuan Qiao, Wei Shen, Zhishuai Zhang, Bo Wang, Alan Yuille, 2018
- Feature Distillation: DNN-Oriented JPEG Compression Against Adversarial Examples, Zihao Liu, Qi Liu, Tao Liu, Yanzhi Wang, Wujie Wen, 2018
- Multimodal Recurrent Neural Networks with Information Transfer Layers for Indoor Scene Labeling, Abrar H. Abdulnabi, Bing Shuai, Zhen Zuo, Lap-Pui Chau, Gang Wang, 2018
- Born Again Neural Networks, Tommaso Furlanello, Zachary C. Lipton, Michael Tschannen, Laurent Itti, Anima Anandkumar, 2018
- YASENN: Explaining Neural Networks via Partitioning Activation Sequences, Yaroslav Zharov, Denis Korzhenkov, Pavel Shvechikov, Alexander Tuzhilin, 2018
- Knowledge Distillation with Adversarial Samples Supporting Decision Boundary, Byeongho Heo, Minsik Lee, Sangdoo Yun, Jin Young Choi, 2018
- Knowledge Transfer via Distillation of Activation Boundaries Formed by Hidden Neurons, Byeongho Heo, Minsik Lee, Sangdoo Yun, Jin Young Choi, 2018
- Self-supervised knowledge distillation using singular value decomposition, Seung Hyun Lee, Dae Ha Kim, Byung Cheol Song, 2018
- Multi-Label Image Classification via Knowledge Distillation from Weakly-Supervised Detection, Yongcheng Liu, Lu Sheng, Jing Shao, Junjie Yan, Shiming Xiang, Chunhong Pan, 2018
- Learning to Steer by Mimicking Features from Heterogeneous Auxiliary Networks, Yuenan Hou, Zheng Ma, Chunxiao Liu, Chen Change Loy, 2018
- A Generalized Meta-loss function for regression and classification using privileged information, Amina Asif, Muhammad Dawood, Fayyaz ul Amir Afsar Minhas, 2018
- Large scale distributed neural network training through online distillation, Rohan Anil, Gabriel Pereyra, Alexandre Passos, Robert Ormandi, George E. Dahl, Geoffrey E. Hinton, 2018
- KDGAN: Knowledge Distillation with Generative Adversarial Networks, Xiaojie Wang, Rui Zhang, Yu Sun, Jianzhong Qi, 2018
- Deep Face Recognition Model Compression via Knowledge Transfer and Distillation, Jayashree Karlekar, Jiashi Feng, Zi Sian Wong, Sugiri Pranata, 2019
- Relational Knowledge Distillation, Wonpyo Park, Dongju Kim, Yan Lu, Minsu Cho, 2019
- Graph-based Knowledge Distillation by Multi-head Attention Network, Seunghyun Lee, Byung Cheol Song, 2019
- Knowledge Adaptation for Efficient Semantic Segmentation, Tong He, Chunhua Shen, Zhi Tian, Dong Gong, Changming Sun, Youliang Yan, 2019
- Structured Knowledge Distillation for Semantic Segmentation, Yifan Liu, Ke Chen, Chris Liu, Zengchang Qin, Zhenbo Luo, Jingdong Wang, 2019
- Fast Human Pose Estimation, Feng Zhang, Xiatian Zhu, Mao Ye, 2019
- MEAL: Multi-Model Ensemble via Adversarial Learning, Zhiqiang Shen, Zhankui He, Xiangyang Xue, 2019
- Learning Lightweight Lane Detection CNNs by Self Attention Distillation, Yuenan Hou, Zheng Ma, Chunxiao Liu, Chen Change Loy, 2019
- Improved Knowledge Distillation via Teacher Assistant: Bridging the Gap Between Student and Teacher, Seyed-Iman Mirzadeh, Mehrdad Farajtabar, Ang Li, Hassan Ghasemzadeh, 2019
- A Comprehensive Overhaul of Feature Distillation, Byeongho Heo, Jeesoo Kim, Sangdoo Yun, Hyojin Park, Nojun Kwak, Jin Young Choi, 2019
- Contrastive Representation Distillation, Yonglong Tian, Dilip Krishnan, Phillip Isola, 2019
- Distillation-Based Training for Multi-Exit Architectures, Mary Phuong, Christoph H. Lampert, Am Campus, 2019
- Learning Metrics from Teachers: Compact Networks for Image Embedding, Lu Yu, Vacit Oguz Yazici, Xialei Liu, Joost van de Weijer, Yongmei Cheng, Arnau Ramisa, 2019
- On the Efficacy of Knowledge Distillation, Jang Hyun Cho, Bharath Hariharan, 2019
- Revisit Knowledge Distillation: a Teacher-free Framework, Li Yuan, Francis E.H.Tay, Guilin Li, Tao Wang, Jiashi Feng, 2019
- Ensemble Distribution Distillation, Andrey Malinin, Bruno Mlodozeniec, Mark Gales, 2019
- [Improving Generalization and Robustness with