#模型压缩

airllm - 在单个4GB GPU上运行70B大模型,无需量化和蒸馏
AirLLMLlama3.1大语言模型模型压缩推理优化Github开源项目
AirLLM优化了推理内存使用,使70B大模型能在单个4GB GPU上运行,无需量化、蒸馏或剪枝。同时,8GB显存可运行405B的Llama3.1。支持多种模型压缩方式,推理速度可提升至3倍。兼容多种大模型,提供详细配置和案例,支持在MacOS上运行。
DeepSpeed - 一个深度学习优化库,专为大规模模型训练和推理设计
DeepSpeed大规模模型训练模型压缩分布式训练模型推理Github开源项目
DeepSpeed 是一个深度学习优化软件套件,专为大规模模型训练和推理设计,能显著优化系统性能和降低成本。它支持亿级至万亿级参数的高效管理,兼容各种计算环境,从资源受限的GPU系统到庞大的GPU集群。此外,DeepSpeed 在模型压缩和推理领域亦取得创新成就,提供极低的延迟和极高的处理速率。
nni - 可自动执行特征工程、神经架构搜索、超参数调优和深度学习的模型压缩
NNI神经网络智能优化模型压缩超参数调整架构搜索Github开源项目
NNI提供一站式解决方案,支持自动化的特征工程、神经架构搜索、超参数调整和模型压缩。它兼容多种框架,并提供详尽的API、丰富的示例及全面的教程。适用于多种训练环境,包括本地、远程SSH服务器和Kubernetes,帮助推动开源社区的技术发展。
SqueezeLLM - 硬件资源优化下的大语言模型量化服务
SqueezeLLM量化大语言模型内存优化模型压缩Github开源项目
SqueezeLLM通过密集与稀疏量化方法降低大语言模型的内存占用并提升性能,将权重矩阵拆分为易量化的密集组件和保留关键部分的稀疏组件,实现更小内存占用、相同延迟和更高精度。支持包括LLaMA、Vicuna和XGen在内的多个热门模型,提供3位和4位量化选项,适用于不同稀疏度水平。最新更新涵盖Mistral模型支持和自定义模型量化代码发布。
AliceMind - 阿里巴巴预训练编码器和解码器模型集合
AliceMind大规模预训练模型多模态语言模型优化技术模型压缩Github开源项目
此项目涵盖了阿里巴巴机器智能实验室(MinD Lab)开发的多种预训练模型和优化技术。包括首个提升多模态大语言模型mPLUG-Owl2和多模态文档理解模型mPLUG-DocOwl。另有中文视频语言预训练数据集Youku-mPLUG和多模态语言模型mPLUG-Owl的新型训练范式。此外,还包含开放域对话系统ChatPLUG、跨文本、图像和视频的多模态基础模型mPLUG-2等,适用于语言理解、生成、表格理解和跨语言等应用场景。
PaddleSlim - 深度学习模型压缩工具库PaddleSlim:低比特量化、知识蒸馏、稀疏化和结构搜索
PaddleSlim模型压缩量化剪枝深度学习Github开源项目
PaddleSlim是一个深度学习模型压缩的工具库,提供低比特量化、知识蒸馏、稀疏化和模型结构搜索等策略。支持自动化压缩,量化预测能加速2.5倍,模型体积减少3.9倍。提供YOLOv8自动化压缩示例,并优化了在Nvidia GPU和ARM设备上的性能。适用于视觉和自然语言处理任务。支持PaddlePaddle和PaddleLite多个版本,适合有模型压缩需求的开发者使用。
onnx-tool - 专注于深度学习和自然语言处理的ONNX模型管理工具
onnx-tool模型压缩形状推理模型概要分析内存压缩Github开源项目
ONNX-tool是一款强大的工具,支持ONNX模型的解析和编辑、推断和压缩。适用于自然语言处理和计算机视觉模型,提供模型构建、形状推断、激活压缩、权重压缩及计算图优化,以提升推理性能和存储效率。
distill-sd - 更小更快速的Stable Diffusion模型,依靠知识蒸馏实现高质量图像生成
Stable Diffusion模型压缩训练细节预训练检查点神经网络Github开源项目
基于知识蒸馏技术开发的小型高速Stable Diffusion模型。这些模型保留了完整版本的图像质量,同时大幅减小了体积和提升了速度。文档详细介绍了数据下载脚本、U-net训练方法和模型参数设置,还支持LoRA训练及从检查点恢复。提供清晰的使用指南和预训练模型,适配快速高效图像生成需求。
CTranslate2 - 高效的Transformer模型推理库,提供多种性能优化方案
CTranslate2转换器模型模型压缩性能优化并行执行Github开源项目
CTranslate2是一个用于Transformer模型高效推理的C++和Python库,通过权重量化、层融合、批次重排序等技术,显著提升CPU和GPU上的执行速度并减少内存占用。支持多种模型类型,包括编码器-解码器、仅解码器和仅编码器模型,兼容OpenNMT-py、OpenNMT-tf、Fairseq等框架。其主要特点包括自动CPU检测、代码分发、并行和异步执行以及动态内存使用。
aimet - 深度学习模型优化的量化与压缩工具
AIMET模型量化模型压缩深度学习PyTorchGithub开源项目
AI Model Efficiency Toolkit (AIMET) 提供先进的模型量化和压缩技术,专注于优化已训练的神经网络模型。其主要功能包括跨层均衡、偏差校正、自适应舍入和量化感知训练,显著提升模型运行性能,降低计算和内存要求,并保持任务精度。AIMET 兼容 PyTorch、TensorFlow 和 ONNX 模型,通过 AIMET Model Zoo 提供优化的8位推理神经网络模型。同时,AIMET 支持空间SVD和通道剪枝等压缩技术,并提供可视化工具检查模型量化和压缩效果。
awesome-compression - 模型压缩技术入门教程与实践指南
模型压缩深度学习Datawhale教程实践Github开源项目
这个开源项目提供了一个全面的模型压缩技术入门教程,涵盖剪枝、量化和知识蒸馏等方法。通过结合理论讲解和实践代码,该项目旨在降低学习门槛,帮助初学者和研究人员掌握如何有效压缩深度学习模型,以满足实际应用需求。
neural-compressor - 开源深度学习模型压缩工具库
模型压缩量化深度学习框架Intel Neural Compressor大语言模型Github开源项目
Neural Compressor是一款开源深度学习模型压缩工具库,支持TensorFlow、PyTorch和ONNX Runtime等主流框架。它提供量化、剪枝、知识蒸馏等多种压缩技术,适用于Intel等多种硬件平台。该工具支持大语言模型优化,并与主流云服务和AI生态系统集成。其自动化的精度感知量化策略有助于平衡模型性能和精度。
Efficient-Computing - 华为诺亚方舟实验室开发的AI模型优化技术集合
高效计算模型压缩神经网络深度学习Huawei Noah's Ark LabGithub开源项目
Efficient-Computing项目旨在提高AI模型的计算效率和性能。这个由华为诺亚方舟实验室开发的高效计算方法集合包含多个子项目,涵盖了模型压缩、二值神经网络、知识蒸馏、网络剪枝、模型量化、自监督学习、训练加速、目标检测和低层视觉等领域的技术。该项目为AI研究和开发提供了多样化的工具和资源。
Efficient-LLMs-Survey - 大语言模型效率优化技术综述
大语言模型模型压缩量化高效训练高效推理Github开源项目
本项目系统性地综述了大语言模型效率优化研究,包括模型压缩、高效预训练、微调和推理等方面。从模型、数据和框架三个维度对相关技术进行分类,全面梳理了该领域的最新进展,为研究人员和从业者提供了有价值的参考资料。
gan-compression - 条件生成对抗网络的高效压缩技术
GAN Compression图像生成模型压缩条件生成对抗网络性能优化Github开源项目
GAN Compression项目提出了一种通用的条件生成对抗网络压缩方法,可将pix2pix、CycleGAN等模型的计算量减少9-29倍,同时保持视觉质量。该方法适用于多种生成器架构和学习目标,支持配对和非配对数据。项目开源了预训练模型、演示和教程,便于研究和应用。
Knowledge-Distillation-Toolkit - 开源知识蒸馏工具包助力机器学习模型压缩
知识蒸馏模型压缩PyTorch学生模型教师模型Github开源项目
Knowledge-Distillation-Toolkit是一个基于PyTorch和PyTorch Lightning的开源工具包,用于简化机器学习模型压缩过程。通过知识蒸馏技术,用户只需提供教师模型、学生模型、数据加载器和推理管道即可实现模型压缩。该工具包支持多种优化方法和学习率调度器,并提供详细的使用说明和示例代码,方便研究人员和开发者进行模型压缩实验。
amc - 自动化模型压缩技术提升移动设备AI性能
模型压缩AutoMLMobileNetImageNet剪枝Github开源项目
AMC (AutoML for Model Compression) 是一种创新的自动化模型压缩方法,专为优化移动设备上的深度学习模型而设计。该方法通过自动搜索剪枝策略、导出压缩权重和微调,成功将MobileNet等模型的计算量减少50%,同时维持或提升准确率。AMC不仅适用于MobileNet-V1和V2,还提供PyTorch和TensorFlow格式的压缩模型,为移动设备上的高效AI应用提供了新的可能性。
LLM-Reading-List - 大语言模型技术与优化方法的综合阅读列表
LLMTransformer模型压缩深度学习自然语言处理Github开源项目
该项目收集了大语言模型(LLM)领域的重要论文,主要聚焦推理和模型压缩技术。涵盖Transformer架构、基础模型、位置编码等多个关键领域的研究成果。为LLM技术发展和优化方法的研究提供了全面的参考资料。
sparsegpt - 开源项目实现大型语言模型高效压缩
SparseGPT语言模型模型压缩稀疏化神经网络剪枝Github开源项目
SparseGPT是一个致力于大型语言模型压缩的开源项目。它提供了一套工具,可在单次操作中对OPT、BLOOM和LLaMA等大规模语言模型进行精确剪枝。该项目支持非结构化、n:m结构化和稀疏量化压缩方法,并包含在WikiText2、PTB和C4子集上评估模型性能的脚本。SparseGPT能有效缩减模型规模的同时保持准确性,为研究人员和开发者提供了探索语言模型压缩的实用工具。
EfficientQAT - 高效量化训练技术助力大型语言模型压缩
EfficientQAT大语言模型量化训练模型压缩PyTorchGithub开源项目
EfficientQAT是一种针对大型语言模型的量化训练技术。该技术采用两阶段训练方法,包括分块训练所有参数和端到端训练量化参数,在压缩模型大小的同时保持性能。EfficientQAT支持GPTQ和BitBLAS等多种量化格式,已成功应用于Llama和Mistral等模型系列,有效降低模型存储需求,为大型语言模型的部署提供了实用方案。
BitNet - 高效压缩大型语言模型的1比特变压器实现
BitNet1比特变换器大语言模型PyTorch实现模型压缩Github开源项目
BitNet是一种创新的1比特变压器实现,通过BitLinear层替换标准线性投影,实现大型语言模型的高效压缩。该项目提供PyTorch实现,包含BitLinear、BitNetTransformer和BitAttention等核心组件,支持推理和Hugging Face模型集成。BitNet还探索了视觉任务应用,展现了多模态领域的潜力。项目包括训练脚本、性能基准测试和CUDA优化,为研究人员和开发者提供了全面的工具集。
BK-SDM - 高效轻量的Stable Diffusion压缩模型
Stable DiffusionAI绘图模型压缩知识蒸馏图像生成Github开源项目
BK-SDM是一种压缩版Stable Diffusion模型,通过移除U-Net中的部分模块实现轻量化。该模型采用有限数据进行蒸馏预训练,适用于SD v1和v2各版本,提供基础、小型和微型三种规模。BK-SDM在保持图像质量的同时,显著提高了推理速度,降低了计算资源需求,为高效文本到图像生成提供了新选择。
AutoFP8 - 量化库优化大语言模型推理性能
AutoFP8FP8量化vLLM模型压缩神经网络Github开源项目
AutoFP8是一个开源FP8量化库,用于生成vLLM兼容的压缩检查点。它提供FP8_E4M3精度的量化权重、激活和KV缓存比例,支持静态和动态激活方案。AutoFP8能将预训练模型转换为FP8格式,与vLLM无缝集成,提高大语言模型推理效率,同时保持模型精度。这个工具适用于优化和部署大规模语言模型。
distil-whisper - 快速高效的音频转录模型
Distil-Whisper语音识别模型压缩自然语言处理机器学习Github开源项目
Distil-Whisper是OpenAI Whisper模型的蒸馏版本,速度提升6倍,模型规模缩小49%,同时保持了相近的准确性。该项目支持短语音和长语音转录,提供多个针对英语语音识别的高效模型。Distil-Whisper还可作为Whisper的辅助模型实现推测解码,在保证输出一致性的同时将速度提升2倍。
awesome-knowledge-distillation - 知识蒸馏技术研究论文资源集锦
知识蒸馏深度学习模型压缩神经网络AIGithub开源项目
项目汇集了知识蒸馏领域的学术论文,内容丰富全面。资源从早期神经网络集成研究到当前前沿方法,涉及模型压缩、迁移学习等多个相关方向。对于深入研究知识蒸馏技术的学者和工程师而言,这是一个系统化的参考资料库。
awesome-efficient-aigc - AIGC效率优化技术与资源汇总
AIGCLLM量化高效推理模型压缩Github开源项目
该项目汇集了提高AI生成内容(AIGC)效率的最新技术资源,包括大语言模型(LLMs)和扩散模型(DMs)的优化方法。收录内容涵盖前沿研究论文、代码实现和综述文章,重点关注量化、微调等效率提升技术。这一持续更新的资源库为AIGC领域的研究和开发提供了全面的参考,有助于推动相关技术的进步与落地应用。
fasterai - 开源工具库助力神经网络缩小与加速
神经网络模型压缩稀疏化剪枝FasteraiGithub开源项目
fasterai是一个致力于优化神经网络规模和速度的开源库。该库提供稀疏化、剪枝、知识蒸馏和彩票假设等多种网络压缩技术。其核心特性为高度可定制的稀疏化功能,允许用户调整粒度、上下文、标准和调度。此外,fasterai还包含正则化和知识蒸馏功能,有助于提升模型性能和效率。该库与fastai兼容,可轻松集成到现有深度学习工作流程中。
Aidget - 边端AI算法部署工具链 高性能推理和自动化模型压缩
Aidget边端AI深度学习推理引擎模型压缩高性能计算Github开源项目
Aidget是一款边端AI算法部署工具链,集成高性能深度学习推理引擎和模型自动化压缩功能。适用于多种边端系统和平台,支持ONNX和TFLite等多种模型格式。特点包括轻量级部署、强通用性、易用性和高性能推理。已在智能家电领域得到实际应用,有效解决AI算法部署中的资源限制、性能优化和跨平台兼容性等问题。
dl_note - 深度学习全栈指南 从计算机视觉到大语言模型
深度学习神经网络模型压缩推理部署LLMGithub开源项目
dl_note项目是一个综合性深度学习资源库,涵盖从数学基础到模型部署的全过程。内容包括神经网络基础、深度学习技巧、模型压缩、推理优化及大语言模型等。项目注重实际应用,提供详细代码解析和实战经验,适合深度学习技术的学习者和从业者参考使用。
TinyNeuralNetwork - 高效易用的深度学习模型压缩框架
TinyNeuralNetwork深度学习模型压缩神经网络量化训练Github开源项目
TinyNeuralNetwork是一个开源的深度学习模型压缩框架,提供神经架构搜索、剪枝、量化和模型转换等功能。该框架支持计算图捕获、依赖解析、多种剪枝算法、量化感知训练和模型转换,为深度学习模型优化提供全面解决方案。TinyNeuralNetwork已应用于天猫精灵、海尔电视等超过1000万IoT设备,实现AI能力部署。
channel-pruning - 通道剪枝技术加速深度神经网络
Channel Pruning神经网络加速模型压缩深度学习计算机视觉Github开源项目
Channel Pruning 项目开发了一种通道剪枝技术,用于加速深度神经网络。该技术显著提高了 VGG-16、ResNet-50 等模型的推理速度,同时保持了较高准确率。项目还包含针对 Faster R-CNN 的剪枝方法,为计算机视觉任务提供了高效解决方案。具体实现了 VGG-16 模型 4 倍和 5 倍的加速,ResNet-50 模型 2 倍加速,以及 Faster R-CNN 2 倍和 4 倍加速。这些优化后的模型在 ImageNet 分类和目标检测任务上仍保持了较高性能。项目提供了代码和预训练模型,方便研究者复现实验结果。
model_optimization - 开源神经网络模型压缩与优化工具集
Model Compression ToolkitMCT神经网络优化量化模型压缩Github开源项目
Model Compression Toolkit (MCT)是一个专注于神经网络模型优化的开源项目,旨在满足高效硬件约束下的部署需求。MCT提供多种量化方法,包括训练后量化和基于梯度的训练后量化,同时支持数据生成和结构化剪枝等功能。此工具集还具备针对特定目标平台的优化能力,为研究人员和开发者提供了全面的模型压缩解决方案。
wanda - 基于权重和激活的大型语言模型剪枝技术
WandaLLM剪枝模型压缩稀疏性权重激活Github开源项目
Wanda是一种针对大型语言模型(LLM)的剪枝技术,通过结合权重大小和输入激活范数来选择性移除权重。相比传统的仅基于权重大小的剪枝方法,Wanda展现出更高的效率。该技术支持LLaMA、LLaMA-2等多种模型,可实现非结构化和结构化稀疏。Wanda方法简单实用,在维持模型性能的同时有效降低参数量,为LLM的轻量化和优化开辟了新途径。
awesome-ml-model-compression - 机器学习模型压缩与加速技术资源汇总
模型压缩机器学习深度学习神经网络AI加速Github开源项目
本项目汇总了机器学习模型压缩和加速领域的优质资源,包括研究论文、技术文章、教程和工具库等。涵盖量化、剪枝、知识蒸馏和轻量级网络设计等多种技术方法。为研究人员和工程师提供了优化深度学习模型性能和效率的重要参考。项目内容持续更新,欢迎提交新的相关资源。
Awesome-Pruning - 神经网络剪枝技术论文与代码资源汇总
神经网络剪枝深度学习模型压缩稀疏化AwesomeGithub开源项目
该项目汇总了神经网络剪枝领域从2015年至今的重要研究成果。内容涵盖权重剪枝、滤波器剪枝和特殊网络剪枝等多种技术。论文按年份和会议分类,并提供标题、发表venue、剪枝类型及代码链接。此外还包含一篇结构化剪枝综述和分类图。对神经网络压缩和效率优化研究者而言,这是一个全面且实用的资源集合。
DeepSpeed - 大模型的训练工具
热门AI开发模型训练AI工具DeepSpeedAI系统技术大规模训练模型压缩高性能计算
DeepSpeed是一个先进的深度学习优化工具库,专门设计用于简化和增强分布式训练。通过一系列创新技术,如ZeRO、3D并行处理、MoE和ZeRO-Infinity,DeepSpeed能大幅提高训练速度,同时降低成本。这些技术支持在数千GPU上扩展模型训练,并实现低延迟和高吞吐量的推理性能。DeepSpeed同时提供了先进的模型压缩技术,优化模型存储与推理效率,是大规模AI模型训练和推理的优选方案。