Project Icon

PPO-for-Beginners

PyTorch实现近端策略优化算法详解

该项目提供使用PyTorch从零实现近端策略优化(PPO)算法的教程。代码精简、注释详尽、结构清晰。涵盖PPO算法核心概念、网络实现及完整训练流程。适合想深入理解PPO算法细节的强化学习爱好者。

PyTorch_Tutorial - PyTorch深度学习实践教程
GithubPyTorch代码实践开源项目教程模型训练深度学习
PyTorch_Tutorial是一个综合性深度学习教程项目,专注于PyTorch框架的应用。教程涵盖基础到高级的模型训练技巧,提供计算机视觉、自然语言处理和大型语言模型等领域的实践案例。内容还包括ONNX和TensorRT等推理部署框架的使用指南,展示了从模型开发到部署的完整流程。项目定期更新,配有环境配置说明,适合深度学习研究者和实践者参考学习。
deep-learning-v2-pytorch - 深度学习教程与项目实战指南
Deep LearningGithubPyTorch卷积神经网络开源项目生成对抗网络神经网络
本仓库提供 Udacity 深度学习 v7 纳米学位课程的相关资料,包括各种深度学习主题的教程笔记本,涉及卷积神经网络、循环神经网络和生成对抗网络等模型的实现。内容涵盖权重初始化、批量归一化等技术,用户还可以访问项目起始代码,并学习在 AWS SageMaker 上部署模型。
rl-book - 强化学习理论及Python实现的教程和代码
GithubPyTorchReinforcement LearningTensorFlow开源项目理论算法
本书系统介绍强化学习,从基础理论到具体算法实现,包含基于TensorFlow和PyTorch的代码对照,实现经典和现代深度强化学习算法。提供完整数学推导和高质量代码,适合希望深入理解和应用强化学习的读者。
pytorch-book - PyTorch 1.8入门与高级应用指南
GithubPyTorch开源项目深度学习生成对抗网络神经网络自然语言处理
这本书提供了《深度学习框架PyTorch:入门与实践(第2版)》的对应代码,基于PyTorch 1.8编写,内容涵盖基础使用、高级扩展和实战应用三大模块。读者可以学习从安装PyTorch、使用Tensor与自动微分系统、构建神经网络模块到进行数据加载与GPU加速等操作。此外,还讲解了向量化、分布式计算及CUDA扩展的高级技术,并通过图像分类、生成对抗网络、自然语言处理、风格迁移及目标检测等实战项目,深入理解并应用PyTorch进行深度学习开发。
LLM-RLHF-Tuning - RLHF三阶段训练支持指令微调、奖励模型和多种训练方式
DPOGithubLLaMALLaMA2PPORLHF开源项目
本项目实现了RLHF的三阶段训练,包括指令微调、奖励模型训练和PPO算法训练。支持LLaMA和LLaMA2模型,并提供多种分布式加速训练方法。项目附有详细的实现文档,并对比了其他开源框架的功能,是RLHF训练的宝贵资源。
rsl_rl - 面向GPU的高效强化学习框架
GPU运行GithubPPO算法RSL RL开源项目强化学习
rsl_rl是一个专为GPU运行优化的强化学习框架,目前实现了PPO算法,未来将支持更多算法。框架提供详细的安装指南,集成多种日志工具,并采用严格的代码质量管理。它在Legged-Gym和Orbit等机器人仿真环境中得到应用,为强化学习研究和开发提供了高效工具。
cleanrl - 一个深度强化学习库
CleanRLGithubPPO算法云集成单文件实现开源项目深度强化学习
CleanRL是一款简洁高效的深度强化学习库,提供单文件实现和广泛的算法支持,包括PPO、DQN等。它支持本地和云端实验、Tensorboard日志记录及Weights and Biases管理,适用于研究与快速原型开发。
pytorch-cpp - C++ 实现的 PyTorch 教程,为深度学习研究者提供从基础到高级的全面指南
C++GithubLibTorchPyTorch开源项目教程深度学习
本项目提供了 C++ 版本的 PyTorch 教程,适用于从基础到高级的深度学习研究者,涵盖线性回归、卷积神经网络和生成对抗网络等内容。支持 macOS、Linux 和 Windows 的多平台编译和运行,项目要求包括 C++-17 兼容编译器、CMake 和合适版本的 LibTorch。含有全面的构建与运行指南,以及交互式教程和 Docker 支持。
direct-preference-optimization - DPO算法实现语言模型的偏好数据优化
DPOGithub偏好优化开源项目机器学习训练算法语言模型
DPO(Direct Preference Optimization)是一种语言模型训练算法,通过偏好数据优化模型。该项目提供DPO算法的参考实现,包含监督微调和基于偏好学习两个阶段。支持各种因果HuggingFace模型,可添加自定义数据集,并包括'conservative' DPO和IPO等变体。这为研究人员提供了灵活工具,用于从偏好数据训练语言模型。
Practical_RL - 强化学习开源课程:实用技巧与实践
GithubGoogle ColabHSEPractical_RLYSDA开源项目强化学习
Practical_RL是一个专注于强化学习实用性的开源课程,提供HSE和YSDA的课堂教学及线上学习支持,涵盖英语和俄语材料。课程从基础理论到实践应用,包括价值迭代、Q学习、深度学习、探索策略、策略梯度方法、序列模型及部分观察MDP等内容。学生可以通过GitHub改进课程,使用Google Colab或本地环境进行实践。适合希望在实际问题中应用强化学习的学生和研究者。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号