Project Icon

edward2

概率编程语言,为深度学习生态系统设计,支持编写和操控模型用于灵活的训练和推断

Edward2是一个简洁易用的概率编程语言,为深度学习生态系统设计,支持编写和操控模型用于灵活的训练和推断。项目包括核心库代码、示例和前沿研究,同时支持TensorFlow、JAX和NumPy后端。用户可将随机变量与TensorFlow操作结合,开展如贝叶斯逻辑回归等任务。此外,Edward2支持模型计算操作追踪及程序转换,满足各种训练和测试需求。

Dive-into-DL-TensorFlow2.0 - TensorFlow 2.0 深度学习中文教程与代码实现
GithubTensorFlow2代码重构动手学深度学习开源项目机器学习深度学习
本项目将《动手学深度学习》一书中的MXNet代码改为TensorFlow 2.0实现,提供完整的中文学习资源,涵盖线性回归、卷积神经网络、循环神经网络等核心内容。适合对深度学习感兴趣的初学者,只需掌握基础数学和Python编程即可入门。
TensorFlow-Examples - 探索TensorFlow的最佳实践与全面教程
GithubTensorFlow开源项目数据管理机器学习深度学习神经网络
TensorFlow-Examples提供针对TensorFlow 1和2的详尽教程,涵盖从基础操作到高级模型如深度神经网络,适合初学者通过详细的笔记本和代码解析深入学习,同时介绍最新的API使用实践,如layers、estimator和dataset。
Gen.jl - 通用概率编程系统,具备可编程推理功能
Gen.jlGithubMIT Probabilistic Computing ProjectPLDI开源项目概率编程编程语言设计与实现会议
Gen.jl是由MIT概率计算项目组开发的一个通用概率编程平台。它为研究者提供了灵活的工具来构建复杂的概率模型,并支持用户自定义推理算法。平台提供了完整的文档和教程。2019年PLDI会议论文详细介绍了其设计和实现。更多信息和支持,请访问官方网站。
BMW-TensorFlow-Training-GUI - 简化TensorFlow 2模型训练的工具
Deep LearningDockerGPUGithubTensorBoardTensorflow开源项目
此开源项目提供用户轻松开始TensorFlow 2深度学习模型训练的工具。用户仅需提供标注数据集,并通过TensorBoard监控训练过程。项目支持内置推理REST API,CUDA 11以及多GPU训练,推荐在Ubuntu 18.04和Google Chrome浏览器环境下使用。
pymc - Python贝叶斯统计建模与概率编程框架
GithubPyMCPython包变分推断开源项目贝叶斯统计建模马尔可夫链蒙特卡洛
PyMC是一个Python贝叶斯统计建模框架,专注于高级马尔可夫链蒙特卡洛和变分推断算法。它提供直观的模型语法、强大的采样算法和推断功能,可处理复杂模型。PyMC利用PyTensor优化计算,支持缺失值处理,并提供丰富的示例资源。作为一个灵活的概率编程工具,PyMC适用于广泛的统计建模任务。
llama2.c - 轻量级Llama 2推理引擎 支持多平台高性能部署
AI模型GithubLlama 2人工智能开源项目自然语言处理
llama2.c是一个基于Llama 2的开源轻量级推理引擎,支持在Linux、BSD、macOS和Windows等多平台上运行。它提供高性能CPU和GPU推理,并可利用OpenBLAS、Intel MKL等加速库。该项目旨在通过部署小型网络化LLM,在资源受限环境(如学校图书馆)中实现AI应用,推动AI技术的普及和集体智能的发展。
EdgeChains - 为大型语言模型打造的开源链式思维框架
EdgeChainsGithubKubernetes配置管理jsonnet大语言模型开源项目生成式AI
EdgeChains是一个专为大型语言模型(如OpenAI GPT、LLama2、Falcon等)设计的开源链式思维框架,聚焦于企业级的部署和扩展。它基于jsonnet和honojs,提供单一脚本文件、提示版本管理、自动并行化、容错性以及高可扩展性,让用户能更简便地编写和管理复杂的生成式AI应用程序。
TensorLayer - 高性能且灵活的深度学习和强化学习工具库
GithubTensorFlowTensorLayer开源软件开源项目强化学习深度学习
TensorLayer 是一个基于 TensorFlow 的深度学习和强化学习库,为研究人员和工程师提供多种可定制的神经网络层,简化复杂 AI 模型的构建。它设计独特,结合了高性能与灵活性,支持多种后端和硬件,并提供丰富的教程和应用实例。广泛应用于全球知名大学和企业,如谷歌、微软、阿里巴巴等。
d2l-en - 互动深度学习教程,结合代码、数学与讨论
D2L.aiGithubJupyter笔记本开源书籍开源项目机器学习深度学习
这本开源书籍使用Jupyter笔记本无缝整合深度学习的概念、背景和代码,免费提供给所有人。书中包含可运行代码、技术深度和社区讨论,帮助读者解决实际问题并成长为应用机器学习科学家。
mlx-gpt2 - MLX框架实现GPT-2模型:从零开始的深度学习之旅
GPT-2GithubMLX嵌入层开源项目自注意力训练循环
本项目展示了使用MLX框架从零实现GPT-2模型的完整过程。内容涵盖数据准备、词汇表创建和模型架构设计等核心步骤。该实现仅依赖MLX和NumPy库,可在MacBook上快速训练出能生成莎士比亚风格文本的模型。项目借鉴了Karpathy的GPT教程思路,并通过MLX框架重新实现,为深度学习爱好者提供了实践指南。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

问小白

问小白是一个基于 DeepSeek R1 模型的智能对话平台,专为用户提供高效、贴心的对话体验。实时在线,支持深度思考和联网搜索。免费不限次数,帮用户写作、创作、分析和规划,各种任务随时完成!

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

Trae

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号