Project Icon

ceval

全面评估中文大语言模型能力的基准测试

C-Eval是一个综合性中文基础模型评估套件,涵盖52个学科和4个难度级别的13948道多选题。该项目通过零样本和少样本评估,展示了主流模型在STEM、社会科学和人文学科等领域的表现。C-Eval旨在帮助开发者追踪模型进展并分析其优缺点。研究者可通过官方网站或相关论文获取详细信息,并利用提供的数据和方法评估自己的模型。

EVA - 推进大规模视觉表示学习的前沿
CLIPEVAGithub多模态学习开源项目自监督学习视觉表示
EVA是北京智源人工智能研究院开发的视觉表示学习模型系列。它包括多个子项目,如EVA-01和EVA-CLIP,致力于探索大规模掩码视觉表示学习的极限和改进CLIP训练技术。这些模型在主流平台上提供,为计算机视觉研究提供了有力支持。EVA项目涵盖基础模型、自监督学习和多模态学习等前沿领域。
unieval-fact - UniEval:革新自然语言生成的多维度评估方法
GithubHuggingfaceUniEval事实一致性多维度评估开源项目模型自然语言生成预训练评估器
unieval-fact是EMNLP 2022论文提出的预训练评估器,专注于事实一致性检测。该项目旨在统一多维度文本生成评估,弥补自动评估与人工评估的差距。它超越传统相似度指标,为自然语言生成系统提供更全面、细粒度的评估方法,尤其适用于评估先进生成模型的表现。
checklist - 全面评估NLP模型行为的测试框架
CheckListGithubNLP开源项目模型评估测试行为测试
CheckList是一个用于全面测试NLP模型的框架,它提供了多种测试类型和工具。主要功能包括生成测试数据、扰动现有数据、创建和运行各类测试等。通过CheckList,研究人员和开发者可以更全面地评估NLP模型的行为表现,识别潜在问题和偏差。该项目包含详细教程和代码示例,支持多语言测试,并可与主流NLP库集成。
CEPE - 并行编码框架助力语言模型处理长文本
CEPEGithubLLaMA上下文扩展并行编码开源项目长文本语言建模
CEPE是一个扩展语言模型上下文窗口的开源框架,采用并行编码方法处理长文本输入。该项目提供数据预处理、模型训练和基线评估的完整代码,并发布了可通过Hugging Face使用的预训练模型。CEPE在语言建模和开放域问答等任务中表现优异,为处理长文本提供了高效解决方案。
Awesome-LLMs-Evaluation-Papers - 大型语言模型评估研究论文综述
GithubLLMs评估大语言模型安全性评估对齐性评估开源项目知识能力评估
该项目汇总了大型语言模型(LLMs)评估领域的前沿研究论文,涵盖知识能力、对齐性和安全性评估等方面。还包括特定领域的LLMs评估和综合评估平台介绍。旨在为研究人员提供全面的LLMs评估资源,推动语言模型的可靠发展,平衡社会效益与潜在风险。
LLMs-Planning - 大型语言模型规划与推理能力评估与分析工具
GithubLLM人工智能基准测试开源项目规划评估
LLMs-Planning项目包含PlanBench和大型语言模型规划能力分析两个子项目。PlanBench提供可扩展的基准测试,用于评估大型语言模型在规划和推理变化方面的表现。项目还对大型语言模型的规划能力进行了批判性调查,为自然语言处理和人工智能规划领域的研究者提供了重要参考。
AlignBench - 多维度评估中文大语言模型对齐性能的基准
AlignBenchGPT-4-0613Github大语言模型对齐水平开源项目评测
AlignBench 是多维度评估中文大语言模型对齐性能的评测基准。最新的 v1.1 版本提供了动态更新的数据、详细评分规则和高质量参考答案,确保评估的可靠性和可解释性。涵盖八大能力类别的数据主要来自真实用户问题,并使用 GPT-4 作为评分模型,通过多维度分析方法系统评估模型性能。
llm_benchmarks - 大语言模型评估基准集合
GithubLLM人工智能开源项目机器学习自然语言处理语言理解
llm_benchmarks是一个全面的大语言模型评估基准集合,涵盖知识理解、推理能力、多轮对话和内容摘要等方面。该项目包含MMLU、ARC、GLUE等知名数据集,用于测试模型在不同任务中的表现。这一标准化工具为评估大语言模型性能提供了可靠依据,有助于相关技术的发展与应用。
nlg-eval - 自然语言生成多指标评估工具使用指南
BLEUGithubPythonnlg-eval开源项目自然语言生成评估方法
提供全面的自然语言生成(NLG)评估工具,包含BLEU、METEOR、ROUGE、CIDEr等多种无监督指标。文档涵盖安装、设置、验证及使用方法,并支持Python API和命令行使用方式,适用于多种操作系统。
auto-j - 开源大语言模型评估工具
Auto-JGithub大语言模型对齐评估开源开源项目生成式评判
Auto-J是一款开源的大语言模型评估工具,可评估模型与人类偏好的对齐程度。该工具覆盖58个真实场景,支持成对响应比较和单一响应评估,并提供详细的自然语言评论。Auto-J具有通用性强、灵活性高、可解释性好等特点,在多项评估任务中表现优异,为大语言模型的对齐研究提供支持。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号