Project Icon

MVDet

基于特征透视变换的多视角行人检测系统

MVDet是一个开源的多视角行人检测系统,采用特征透视变换技术提高检测精度。项目包含自主开发的合成数据集MultiviewX,为相关研究提供数据支持。在Wildtrack数据集上,MVDet达到88.2%的MODA。项目开放源代码和预训练模型,便于研究人员进行深入研究。

yolov3 - 开源视觉AI技术
GithubUltralyticsYOLOv3人工智能图像识别开源项目目标检测
YOLOv3是Ultralytics公司开发的开源视觉AI技术,汇集了广泛的研究和丰富经验。平台包含详尽的文档和教程,支持社区讨论,简化学习和实施过程。此技术因其出色性能和易用性,在全球范围内被广泛采用,帮助用户迅速部署并有效训练模型。
Transformer_Tracking - 视觉追踪中Transformer应用的全面综述和前沿动态
GithubTransformer开源项目深度学习目标检测视觉跟踪计算机视觉
本项目汇总了Transformer在视觉追踪领域的应用进展,包括统一追踪、单目标追踪和3D单目标追踪等方向。内容涵盖最新研究论文、技术趋势分析、基准测试结果以及学习资源,为相关研究人员和从业者提供全面的参考信息。重点关注自回归时序建模、联合特征提取与交互等前沿技术,展现了视觉追踪的最新发展动态。
MotionLLM - 融合视频和动作数据的人类行为理解先进AI模型
GithubMotionLLM人工智能人类行为理解多模态学习大语言模型开源项目
MotionLLM是一个人类行为理解框架,通过融合视频和动作序列数据来分析人类行为。该项目采用统一的视频-动作训练策略,结合粗粒度视频-文本和细粒度动作-文本数据,以获得深入的时空洞察。项目还包括MoVid数据集和MoVid-Bench评估工具,用于研究和评估人类行为理解。MotionLLM在行为描述、时空理解和推理方面展现出优越性能,为人机交互和行为分析研究提供了新的方向。
yolov7 - 实时目标检测算法实现性能新突破
GithubYOLOv7开源项目性能优化深度学习目标检测计算机视觉
YOLOv7是一款高效的实时目标检测算法,在MS COCO数据集上实现了51.4% AP的性能。该项目提供多种模型变体,包括YOLOv7-X和YOLOv7-W6等,适用于不同应用场景。此外,YOLOv7还具备姿态估计和实例分割功能,支持多GPU训练、迁移学习和模型导出,是一个全面的目标检测解决方案。
CoDA_NeurIPS2023 - 创新3D目标检测框架实现开放词汇表任务
CoDAGithub开放词汇3D目标检测开源项目深度学习神经网络计算机视觉
CoDA是一个开源的开放词汇表3D目标检测框架,通过协作式新颖框发现和跨模态对齐技术提高对未见类别的检测能力。该项目支持ScanNet和SUN RGB-D数据集,提供完整的代码、预训练模型和数据集。CoDA的创新方法在NeurIPS 2023发表,为3D场景理解研究提供了新的思路。项目基于PyTorch开发,并提供详细的安装和使用指南。
Multi-Task-Transformer - 场景理解多任务变压器模型 TaskPrompter和InvPT
GithubTransformer场景理解多任务学习开源项目深度学习计算机视觉
Multi-Task-Transformer项目提供两种场景理解多任务变压器模型:TaskPrompter和InvPT。TaskPrompter利用空间-通道多任务提示进行密集场景理解,InvPT采用倒金字塔架构。这些模型在单目深度估计和3D目标检测等任务中表现出色,并在ICLR2023和ECCV2022会议上发表。项目开源代码和预训练模型,支持多种计算机视觉应用。
CoDet - 共现引导的开放词汇目标检测方法
CoDetGithub图像文本对齐开放词汇开源项目深度学习目标检测
CoDet是一种开放词汇目标检测方法,采用共现引导来对齐区域和词语。该方法利用大规模图像-文本对训练,在LVIS和COCO数据集上表现优异。CoDet兼容现代视觉基础模型,并可与Roboflow集成实现自动图像标注。这一方法为开放词汇目标检测领域提供了新的解决方案。
AdelaiDet - 多任务实例级识别开源工具包
AdelaiDetGithub实例分割开源项目深度学习目标检测计算机视觉
AdelaiDet是基于Detectron2的开源工具包,实现了FCOS、BlendMask、MEInst、ABCNet等多种实例级识别算法。它为目标检测、实例分割、场景文本识别等任务提供高性能解决方案,包含预训练模型和训练接口,便于研究和开发。
MonoHuman - 单目视频生成可动画化3D人体神经场景技术
3D渲染GithubMonoHuman人体神经场动画化人体单目视频开源项目
MonoHuman框架利用单目视频生成高质量、视角一致的3D人体动画。通过双向变形约束和关键帧信息建模变形场,实现任意新姿势的高保真渲染。该技术在ZJU-Mocap数据集和自然场景视频中表现优异,为虚拟现实和数字娱乐领域提供了有力支持。
Depth-Anything - 大规模无标注数据驱动的强大单目深度估计模型
Depth AnythingGithub人工智能图像处理开源项目深度估计计算机视觉
Depth Anything是一款基于大规模数据训练的单目深度估计模型。它利用150万标注图像和6200万无标注图像进行训练,提供小型、中型和大型三种预训练模型。该模型不仅支持相对深度和度量深度估计,还可用于ControlNet深度控制、场景理解和视频深度可视化等任务。在多个基准数据集上,Depth Anything的性能超越了此前最佳的MiDaS模型,展现出优异的鲁棒性和准确性。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号