Project Icon

LaVIT

大语言模型理解生成视觉内容的统一框架

LaVIT项目是一个创新的多模态预训练框架,旨在增强大语言模型处理视觉内容的能力。该项目通过动态离散视觉标记化技术,将图像和视频转换为离散标记序列,使大语言模型能够理解和生成视觉内容。LaVIT支持图像和视频的理解、生成,以及多模态提示生成,为计算机视觉和自然语言处理的融合提供了新的可能性。

ViT-B-16-SigLIP - 基于WebLI数据集的SigLIP视觉语言模型
GithubHuggingfaceSigLIPViT-B-16WebLI图像文本对比开源项目模型零样本图像分类
ViT-B-16-SigLIP是一个在WebLI数据集上训练的视觉语言模型,使用Sigmoid损失函数进行预训练。该模型支持对比学习和零样本图像分类任务,可通过OpenCLIP和timm库使用。ViT-B-16-SigLIP在图像-文本对齐和特征提取方面具有良好性能,适用于计算机视觉和自然语言处理的交叉应用研究。
Visual-Chinese-LLaMA-Alpaca - 多模态中文模型VisualCLA开发与优化技术
CLIP-ViTChinese-Alpaca-PlusGithubLLaMAVisual-Chinese-LLaMA-Alpaca多模态模型开源项目
VisualCLA基于中文LLaMA/Alpaca模型,增加图像编码模块,实现图文联合理解和对话能力。目前发布测试版,提供推理代码和部署脚本,并展示多模态指令理解效果。未来将通过预训练和精调优化,扩展应用场景。
vision-lstm - 将LSTM技术创新应用于计算机视觉的前沿架构
GithubViLVision-LSTM图像处理开源项目计算机视觉预训练模型
Vision-LSTM (ViL)是一个将LSTM技术创新应用于计算机视觉的开源项目。它提供了简洁的架构实现和完整的训练流程,在ImageNet-1K等视觉任务上表现优异。ViL支持多种模型配置,并提供预训练权重。项目采用双向LSTM结构,支持不同尺寸的模型(如tiny、small、base等),并提供了适用于长序列的fine-tuning版本。包含详细文档和示例,方便研究人员和开发者探索LSTM在视觉领域的应用。
Open-LLaVA-NeXT - 多模态大语言模型实现视觉语言对齐和指令微调的开源项目
AI模型评估GithubLLaVA-NeXT多模态模型开源实现开源项目视觉语言训练
Open-LLaVA-NeXT是一个复现LLaVA-NeXT系列模型的开源项目。它提供开源训练数据和检查点,基于LLaVA代码库进行修改。该项目支持CLIP-L-336视觉编码器以及Vicuna-7B和LLaMA3-8B等语言模型。通过特征对齐和视觉指令微调两个阶段的训练,Open-LLaVA-NeXT实现了多模态能力,在多项评估任务中表现优异。
blip-itm-base-coco - BLIP模型革新视觉语言理解和生成技术
BLIPGithubHuggingface图像描述图像文本匹配多模态模型开源项目模型视觉语言预训练
BLIP是一个创新的视觉语言预训练框架,通过引导式方法有效利用网络数据。该模型在图像-文本检索、图像描述和视觉问答等任务上表现出色,并能零样本迁移到视频-语言任务。BLIP不仅提高了视觉语言理解和生成的性能,还为这一领域的统一应用开创了新的可能性。
AbSViT - 创新视觉注意力模型实现自适应分析合成
AbSViTGithub图像分类开源项目视觉注意力计算机视觉语义分割
AbSViT是一个创新视觉注意力模型,采用分析合成方法实现自适应的自上而下注意力机制。该模型在ImageNet分类和语义分割任务中表现优异,尤其在鲁棒性测试中展现出色性能。AbSViT能够适应单目标和多目标场景,并根据不同问题动态调整注意力。这一模型为计算机视觉领域开辟了新的研究方向,有望在多种视觉任务中发挥重要作用。
CLIP-ViT-B-32-256x256-DataComp-s34B-b86K - 基于DataComp训练的CLIP多模态视觉语言模型
CLIPDataComp-1BGithubHuggingfaceViT-B-32图像分类开源项目机器学习模型
CLIP ViT-B/32是一个在DataComp-1B数据集上训练的视觉语言模型,通过OpenCLIP框架实现。模型在ImageNet-1k分类任务中实现72.7%零样本准确率,支持图像分类、跨模态检索等研究任务。该开源项目为计算机视觉研究提供了重要的实验基础
Latte - 创新的潜在扩散Transformer视频生成技术
AI模型GithubLatteTransformer开源项目深度学习视频生成
Latte是一种新型视频生成模型,采用潜在扩散Transformer技术。该模型在多个标准数据集上表现优异,并支持文本到视频的生成。项目提供PyTorch实现、预训练模型和相关代码,为视频生成研究提供了重要参考。Latte在建模视频分布方面采用了创新方法,为未来研究提供了新的思路。
llava-onevision-qwen2-7b-ov-hf - 支持单图多图和视频理解的多模态语言模型
GithubHuggingfaceLLaVA-Onevision人工智能图像理解多模态开源项目模型视频理解
LLaVA-Onevision-qwen2-7b-ov-hf是一个基于Qwen2微调的开源多模态大语言模型。作为首个能在单图、多图和视频场景中同时提升性能的模型,它展现了卓越的跨模态和跨场景迁移学习能力。该模型特别擅长视频理解和跨场景任务,支持多图像和多提示生成,适用于广泛的视觉理解应用。
vit-pytorch - 通过PyTorch实现多种视觉Transformer变体
GithubPytorchVision Transformer卷积神经网络图像分类开源项目深度学习
本项目展示了如何在PyTorch中实现和使用视觉Transformer(ViT)模型,包括Simple ViT、NaViT、Distillation、Deep ViT等多种变体。利用基于Transformer架构的简单编码器,本项目在视觉分类任务中达到了先进水平。用户可以通过pip进行安装,并参考提供的代码示例进行模型加载和预测。项目还支持高级功能如知识蒸馏、变分图像尺寸训练和深度模型优化,适用于多种视觉任务场景。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号