Project Icon

enformer-pytorch

基于深度学习的基因表达预测工具

此项目实现了Deepmind的Enformer模型在Pytorch框架下的应用,用于预测基因表达,并支持微调预训练模型以适应下游任务。用户可以通过简易安装和提供的代码示例快速使用该模型。此外,该项目还包含染色质可及性预测的微调方法,并支持从Huggingface下载预训练权重。在内存优化和详细的安装、使用说明方面进行了多项改进,帮助用户高效地进行基因组数据分析和预测。

torchmd-net - 神经网络势能模型的高效训练与实现框架
GPU加速GithubPyTorchTorchMD-NET分子动力学开源项目神经网络势能
TorchMD-NET是一个先进的神经网络势能(NNP)模型框架,提供高效快速的NNP实现。该框架与ACEMD、OpenMM和TorchMD等GPU加速分子动力学代码集成,并将NNP作为PyTorch模块提供。项目支持等变Transformer、Transformer、图神经网络和TensorNet等多种架构,可通过conda-forge安装或从源代码构建。TorchMD-NET具有灵活的训练配置选项,支持自定义数据集和多节点训练,并提供预训练模型。
GENA_LM - 专为长DNA序列设计的开源基础模型家族
DNA序列GENA-LMGithub基因组学开源项目转化器预训练模型
GENA-LM是专为长DNA序列设计的开源基础模型家族。它采用BPE分词方法,支持最长36k bp的输入序列,并基于最新T2T人类基因组进行预训练。该项目提供多种预训练模型,包括BERT和BigBird架构,可用于启动子预测和剪接位点识别等多种下游任务。GENA-LM为基因组学研究提供了新的分析工具,促进了DNA序列分析技术的进步。
EEG-Conformer - 结合卷积和自注意力的EEG解码与可视化工具
EEG ConformerEEG解码Github卷积神经网络大脑波形投影开源项目自注意力机制
EEG Conformer是一种结合卷积和自注意力机制的EEG分类与可视化工具。其卷积模块提取时间和空间上的局部特征,自注意力模块捕捉全局关联,最终通过全连接层进行分类预测。此外,EEG Conformer还具备将类激活映射到脑拓扑图的可视化功能。支持Python 3.10和Pytorch 1.12,在多个BCI竞赛数据集上表现出色。
pytorch-sentiment-neuron - Pytorch版本的情感神经元实现情感分析与文本生成
Githubcudamlstm_ns.ptpython 3.5pytorchsentiment开源项目
项目pytorch-sentiment-neuron基于Pytorch,实现了利用情感神经元进行情感分析和文本生成。用户可以通过预设模型文件和简单的命令行操作生成文本并进行情感分析,lm.py文件还允许在新数据上重新训练模型。该项目依赖Pytorch、Cuda和Python 3.5,适用于自然语言处理和情感分析领域的研究人员和开发者。
chrombpnet - 深度学习模型分析染色质可及性和调控序列
ChromBPNetGithub开源项目染色质可及性深度学习转录因子顺式调控
ChromBPNet是一个用于分析染色质可及性数据的深度学习模型。它采用偏差因子化和全卷积神经网络,能在碱基分辨率上揭示调控序列特征、转录因子结合位点和调控变异。通过自动校正实验偏差,该模型可准确捕捉染色质轮廓的多尺度特征,为研究基因调控提供了新的计算工具。
RNA-FM - 高精度RNA结构和功能预测的解释性基础模型
GithubRNA-FMRNA功能预测RNA结构预测RNA语言模型开源项目预训练模型
RNA-FM是一个基于未注释数据训练的RNA基础模型,在RNA结构预测和功能相关任务中表现出色。项目提供预训练模型和代码,支持RNA嵌入生成和二级结构预测。最新更新包含RNA家族聚类和类型分类教程,以及针对mRNA编码序列的mRNA-FM模型。RNA-FM为RNA研究提供了有力工具,有助于提高RNA结构和功能预测的准确性。
single-cell-transformer-papers - Transformer模型在单细胞组学分析中的应用概览
GithubTransformers单细胞组学基因表达开源项目细胞注释预训练模型
本项目汇总了单细胞组学数据分析中的Transformer模型,包括论文、代码、数据模态等关键信息。通过全面概述单细胞Transformer模型,展示了该领域的最新进展和发展趋势。项目内容持续更新,为研究人员提供了宝贵的参考资源。项目内容涵盖了各Transformer模型的核心要素,如数据模态、预训练数据集、模型架构和任务类型等。这种系统性的整理使研究人员能够快速了解和比较不同模型的特点,为单细胞组学研究提供了有力支持。
egnn-pytorch - PyTorch实现的E(n)等变图神经网络
EGNNGithub分子预测图神经网络坐标更新开源项目特征更新
这个开源项目使用PyTorch实现了E(n)等变图神经网络(EGNN)。项目提供了EGNN的简洁接口,支持边特征和稀疏邻居等功能。EGNN在动力系统建模和分子活性预测等任务中表现领先。项目还包含详细示例和稳定性优化方法,适用于处理复杂的图结构数据。
GenePT - ChatGPT驱动的高效单细胞基因分析模型
ChatGPTGenePTGithub单细胞基础模型基因嵌入开源项目细胞嵌入
GenePT是一种创新的单细胞基础模型,利用ChatGPT嵌入技术解析基因和细胞级生物学问题。该模型基于NCBI基因描述和GPT-3.5生成基因嵌入,无需繁琐的数据整理和密集计算。在基因属性和细胞类型分类等多项任务中,GenePT展现出优异性能,常超越现有模型。这一方法为生物学基础模型开发提供了简便有效的途径,彰显了大型语言模型在文献嵌入方面的应用潜力。
gen-efficientnet-pytorch - 泛型EfficientNet和其它高效PyTorch模型的实现
EfficientNetGithubMixNetMobileNetPyTorch开源项目模型
本项目实现了EfficientNet、MixNet、MobileNetV3等多种高效模型,利用通用架构定义支持多种计算高效的神经网络。所有模型均基于MobileNet V1/V2块序列设计,并支持字符串化架构配置。请注意,该项目现已停止维护,推荐使用`timm`库获取更多功能和权重兼容的模型。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号