Project Icon

recurrent-interface-network-pytorch

无需级联网络的高效图像视频生成模型

Recurrent Interface Network (RIN)是一个基于PyTorch的深度学习模型,用于高效生成高质量图像和视频。该模型结合了诱导集合注意力块、潜在空间自我调节技术和新型噪声函数,无需使用级联网络即可实现出色的生成效果。RIN还支持高分辨率图像的增强噪声处理和线性gamma调度,为图像生成任务提供了灵活的解决方案。

imaginAIry - 探索图像和视频的稳定扩散与AI生成
AI绘图GithubImaginAIry图像处理开源项目热门稳定扩散视频视频生成
imaginAIry是一个先进的AI工具,支持生成高稳定性的图像和视频。项目适用于Linux和macOS操作系统,支持Nvidia GPUs,可通过Python轻松集成。它集成了最新的视频帧插值技术和多种控制模式,如深度图、正常图和控制网图等。此外,imaginAIry还引入了视频输出支持多种格式,如MP4、WebP和GIF,用户可按需生成高质量媒体内容。
inseq - 基于Pytorch的序列生成模型解释性分析工具
GithubInseqPytorch序列生成开源项目模型解释集成渐变
Inseq是一个基于Pytorch的可定制工具包,专为序列生成模型的后验可解释性分析设计。它支持多种特性归因方法,可高效分析单例或整套数据集的各类模型,包括GPT-2。Inseq支持在Jupyter Notebook、浏览器和命令行中进行可视化,并提供多种后处理和归因映射合并功能。
RGT - 递归泛化Transformer模型实现高效图像超分辨率
GithubRGTTransformer全局上下文图像超分辨率开源项目自注意力机制
RGT项目提出递归泛化Transformer模型,通过创新的自注意力机制高效捕获图像全局信息。该模型结合局部和全局特征,在图像超分辨率任务中实现了优异性能,为高质量图像重建提供新思路。实验结果显示RGT在多个评估指标上超越了现有先进方法。
phenaki-pytorch - PyTorch实现Phenaki长视频AI生成技术
AIGithubPhenakiPytorch开源项目机器学习视频生成
项目采用PyTorch框架,实现Phenaki视频生成技术。通过Mask GIT方法,能根据文本提示生成最长2分钟的视频。引入token critic技术以提升生成质量。提供简洁API,支持条件和无条件生成模式。包含完整训练与推理代码,适用于文本到图像和视频生成的相关研究。
torch-conv-kan - 引入基于Kolmogorov-Arnold表示理论的高效卷积神经网络
CUDAConvolutional layersGithubKolmogorov-Arnold NetworksPyTorchTorchConv KAN开源项目
项目展示了使用PyTorch和CUDA加速的Kolmogorov-Arnold网络(KAN)模型的训练、验证和量化,支持MNIST、CIFAR、TinyImagenet和Imagenet1k数据集的性能评估。当前项目持续开发,已发布涉及ResNet、VGG、DenseNet、U-net等架构的新模型和预训练权重,适用于医疗图像分割和高效卷积神经网络的进一步研究和优化。
LaVie - 级联潜在扩散模型实现高质量视频生成
AI视频制作GithubLaVie开源项目文本生成视频潜在扩散模型视频生成
LaVie是一个基于级联潜在扩散模型的文本到视频生成框架。它通过基础模型生成、视频插值和超分辨率三个步骤,可生成16至61帧、最高1280x2048分辨率的高质量视频。该框架支持多种采样方法和参数调整,用户可通过简单命令生成不同风格视频。LaVie开源了模型代码和预训练权重,便于学术研究和商业应用。
make-a-video-pytorch - 基于 PyTorch 的最新文本到视频生成器
3D卷积GithubMake-A-VideoMeta AIPytorch开源项目时序注意力
此项目实现了 Meta AI 的 Make-A-Video 在 PyTorch 下的版本,利用伪 3D 卷积和时序注意力技术,显著增强了视频的时序一致性。支持图像和视频帧的处理,并且可轻松适用于 DALL-E2 和 Imagen 等模型。项目提供了完整的安装和使用指南,并支持空间和时间一致性的 Unet 模型。
iGAN - 交互式图像生成工具,通过用户编辑实时生成图像
GANGithubiGAN交互式图像生成图像翻译开源项目深度生成模型
系统采用深度生成模型(如GAN和DCGAN),提供智能绘图界面,支持用户通过简单笔触实时生成逼真图像样本。用户可通过颜色和形状的画笔进行编辑,系统自动生成符合编辑的图像。此外,该系统也是一种交互式视觉调试工具,帮助开发者理解和可视化深度生成模型的能力与局限性。
pytorch-fid - 生成对抗网络图像质量评估工具
FIDFréchet Inception DistanceGANsGithubPyTorchTensorflow开源项目
pytorch-fid是一款用于计算生成对抗网络(GAN)样本质量的Fréchet Inception Distance(FID)分数的工具。该工具将官方的Tensorflow实现移植到PyTorch,确保相似的准确性和方便性。用户可以自由选择特征层,适应不同的数据集,还支持GPU加速和保存原始数据集的统计信息,便于进行多模型比较,适合研究和开发高质量图像生成模型。
imagen-pytorch - 文本到图像合成技术,基于Pytorch的Imagen实现
GithubImagenPytorchT5模型开源项目文本到图像神经网络
Google的Imagen是一种基于Pytorch实现的文本到图像神经网络,被视为此领域的新技术标杆。它采用简化的架构和优化的设计,例如级联DDPM、动态剪辑和内存高效的Unet设计。该项目在从文本转换成图像的合成过程中,表现出了相比DALL-E2的显著优势,为研究人员和开发者提供了实用的图像生成工具。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号