Project Icon

recurrent-interface-network-pytorch

无需级联网络的高效图像视频生成模型

Recurrent Interface Network (RIN)是一个基于PyTorch的深度学习模型,用于高效生成高质量图像和视频。该模型结合了诱导集合注意力块、潜在空间自我调节技术和新型噪声函数,无需使用级联网络即可实现出色的生成效果。RIN还支持高分辨率图像的增强噪声处理和线性gamma调度,为图像生成任务提供了灵活的解决方案。

magvit2-pytorch - MagViT2视频生成和理解模型的PyTorch开源实现
AI模型GithubMagViT2Pytorch实现开源项目视频生成语言模型
MagViT2是基于语言模型的最新视频生成和理解技术。该PyTorch实现提供高效视频标记器和训练器,支持大规模数据集。项目包含无查找量化器,适用于多种模态。灵活架构设计允许自定义层和注意力机制,为研究人员提供探索和改进视频生成技术的工具。
ReNoise-Inversion - 迭代重噪图像反演方法提升重建精度和编辑效果
AI图像处理GithubReNoise图像反演开源项目扩散模型迭代噪声
ReNoise-Inversion项目开发了一种创新的图像反演方法,利用迭代重噪机制提高重建精度,同时保持低操作成本。该方法适用于多种采样算法和模型,包括最新的加速扩散模型。实验表明,ReNoise技术在精确度和速度方面表现优异,同时保持了图像的可编辑性。这一技术为基于文本的真实图像编辑开辟了新途径。
HyperInverter - 超网络技术实现高质量StyleGAN图像反演
GAN反演GithubStyleGAN人脸生成图像编辑开源项目超网络
HyperInverter是一种两阶段StyleGAN反演方法,结合编码器和超网络实现高质量图像重建、良好可编辑性和快速推理。实验表明,该方法在保持编码器级推理速度的同时,重建质量显著优于现有编码器方法,接近优化方法。在人脸和建筑图像上均取得出色效果。
ml-aim - 自回归图像模型预训练的突破性进展
AIMGithub图像特征大规模模型开源项目自回归图像模型预训练
AIM项目开发了一系列采用自回归生成目标预训练的视觉模型。研究发现,图像特征的自回归预训练呈现出与大型语言模型类似的扩展性。该项目能够将模型参数轻松扩展到数十亿级,并能有效处理大规模未筛选的图像数据。AIM提供多种预训练模型,兼容PyTorch、MLX和JAX等多个框架,为计算机视觉领域的研究与应用提供了有力支持。
Rerender_A_Video - 零样本文本引导的视频风格转换框架
AI视频处理GithubRerender A Video开源项目时间一致性视频转换零样本学习
Rerender_A_Video项目提出了一种零样本文本引导的视频到视频转换框架。该框架通过关键帧转换和全视频转换,实现了视频风格和纹理的时间一致性。无需重新训练,可与现有图像扩散技术兼容,支持使用LoRA自定义主题和ControlNet引入空间引导。这种方法能生成高质量、时间连贯的风格化视频。
cond_rnn - 条件时间序列预测的深度学习框架
ConditionalRecurrentGithubKerasRNNTensorFlow开源项目时间序列
ConditionalRecurrent是一个兼容Keras的包装器,用于基于时间不变数据进行条件时间序列预测。它支持各种循环层,通过学习条件表示来初始化RNN状态,有效模拟P(x_{t+1}|x_{0:t}, cond)。该库适用于包含外部输入的时间序列数据,如天气预测,为整合时间不变条件信息提供了实用的解决方案。
FreeInit - 改进视频生成一致性的方法,无需额外训练
FreeInitGithub开源项目无监督学习时序一致性视频扩散模型视频生成
FreeInit改进了视频扩散模型的一致性,通过简单的频率滤波器实现噪声重初始化,无需额外训练。已集成至Diffusers和ComfyUI-AnimateDiff-Evolved,可在Hugging Face上体验在线demo。项目代码和示例脚本方便研究人员应用。
image-super-resolution - Keras实现的高质量图像超分辨率,支持多种网络结构和训练脚本
GANGithubImage Super-ResolutionKerasPSNRResidual Dense Networks开源项目
本项目旨在通过实现多种残差密集网络(RDN)和残差在残差密集网络(RRDN)来提升低分辨率图像的质量,并支持Keras框架。项目提供了预训练模型、训练脚本以及用于云端训练的Docker脚本。适用于图像超分辨率处理,兼容Python 3.6,开源并欢迎贡献。
DiG - 基于门控线性注意力的高效可扩展扩散模型
DiGDiffusion ModelsGated Linear AttentionGithub图像生成开源项目深度学习
DiG项目提出了一种基于门控线性注意力的扩散模型,用于解决现有模型在可扩展性和计算效率方面的挑战。该模型在高分辨率下展现出显著的训练速度提升和内存节省,性能优于DiT。DiG在不同计算复杂度下表现出色,随着模型深度/宽度增加或输入令牌增强,FID值持续下降。与其他次二次时间复杂度的扩散模型相比,DiG在多种分辨率下都展现出卓越的效率。
ttt-lm-pytorch - 基于测试时训练的高表达能力RNN模型
GithubRNNTTT序列建模开源项目机器学习隐藏状态
ttt-lm-pytorch项目提出了一种新型序列建模层,结合了RNN的线性复杂度和高表达能力的隐藏状态。该方法将隐藏状态设计为机器学习模型,通过自监督学习在测试阶段持续更新,因此被称为测试时训练(TTT)层。项目实现了TTT-Linear和TTT-MLP两种变体,分别采用线性模型和双层MLP作为隐藏状态,为长序列建模提供了高效替代方案。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号