Project Icon

mcunet

面向微控制器的深度学习框架

MCUNet是面向微控制器的系统-算法协同设计框架,包含TinyNAS和TinyEngine两大核心组件。该框架在严格内存限制下提升深度学习性能,相比现有方案推理速度提高1.5-3倍,内存占用降低2.7-4.8倍。MCUNet为IoT应用提供高效深度学习基础设施,推动边缘AI发展。

MegEngine - 高效、可扩展且易于使用的深度学习框架
GithubMegEngine开源项目深度学习框架硬件需求训练与推理高性能
MegEngine是一个高效、可扩展且易于使用的深度学习框架,具有统一的训练和推理框架、低硬件要求和跨平台高效推理的三大关键特性。支持x86、Arm、CUDA、RoCM等多种平台,兼容Linux、Windows、iOS、Android等系统。通过DTR算法和Pushdown内存规划器,大幅降低GPU内存使用。适用于模型开发到部署的各个环节,致力于构建开放友好的AI社区。
Embedded-Neural-Network - 深度神经网络压缩与加速技术综述
Github剪枝开源项目模型量化硬件加速器神经网络压缩稀疏化
Embedded-Neural-Network项目汇集了减小深度神经网络模型大小和加速ASIC/FPGA应用的前沿研究。内容涵盖网络压缩、硬件加速等领域,包括参数共享、知识蒸馏、定点训练、稀疏正则化和剪枝等技术。项目还整理了相关教程和重要会议论文。
corenet - 用于训练多任务深度神经网络的工具库
CoreNetGithub开源项目模型训练深度学习神经网络计算机视觉
CoreNet是一款多功能深度神经网络工具库,支持训练各种规模的标准和创新模型。它适用于基础模型、计算机视觉和自然语言处理等多个领域。该项目提供可复现的训练方案、预训练模型权重和针对Apple Silicon优化的MLX示例,有助于推动AI研究和应用的发展。
nncf - Neural Network Compression Framework:高效神经网络推理压缩算法
GithubNeural Network Compression FrameworkONNXOpenVINOPyTorchTensorFlow开源项目
Neural Network Compression Framework (NNCF) 提供一套后训练和训练时的优化算法,用于在 OpenVINO 中优化神经网络推理,保证最小的精度损失。NNCF 支持 PyTorch、TensorFlow 和 ONNX 等模型,并提供示例展示不同压缩算法的使用案例。NNCF 还支持自动化模型图转换、分布式训练和多种算法的无缝组合,支持将压缩后的 PyTorch 模型导出为 ONNX 检查点及将 TensorFlow 模型导出为 SavedModel 格式。
TinyChatEngine - 面向边缘设备的高效语言模型推理库
AWQGithubLLMSmoothQuantTinyChatEngineVLM开源项目
TinyChatEngine是一个专为边缘设备设计的语言模型推理库,支持运行大型语言模型(LLM)和视觉语言模型(VLM)。该库采用SmoothQuant和AWQ等先进的模型压缩技术,兼容x86、ARM和CUDA等多种平台架构,无需依赖外部库。TinyChatEngine具备跨平台兼容性、高性能和易用性等特点,能在笔记本电脑、汽车和机器人等设备上实现实时推理,提供快速响应的同时保护数据隐私。
nntrainer - 设备端神经网络训练与个性化框架
GithubNNtrainer个性化嵌入式设备开源项目机器学习神经网络
NNtrainer是专为资源受限的嵌入式设备设计的开源神经网络训练框架。支持k-NN、神经网络和逻辑回归等多种机器学习算法,提供少样本学习、ResNet和VGG等任务示例。通过设备端微调实现模型个性化,高效利用有限资源。NNtrainer独特之处在于支持设备端完整训练流程,而非仅限于推理。这使得它在保护用户数据隐私的同时,能够实现个性化模型优化。框架已在Samsung Galaxy智能手机和Ubuntu PC上验证可用。
amc - 自动化模型压缩技术提升移动设备AI性能
AutoMLGithubImageNetMobileNet剪枝开源项目模型压缩
AMC (AutoML for Model Compression) 是一种创新的自动化模型压缩方法,专为优化移动设备上的深度学习模型而设计。该方法通过自动搜索剪枝策略、导出压缩权重和微调,成功将MobileNet等模型的计算量减少50%,同时维持或提升准确率。AMC不仅适用于MobileNet-V1和V2,还提供PyTorch和TensorFlow格式的压缩模型,为移动设备上的高效AI应用提供了新的可能性。
T-MAC - 优化低比特量化LLM推理的CPU加速框架
CPU加速GithubLLM推理T-MAC低比特量化开源项目矩阵乘法
T-MAC是一个创新的内核库,采用查找表技术实现混合精度矩阵乘法,无需反量化即可加速CPU上的低比特LLM推理。该框架支持多种低比特模型,包括GPTQ/gguf的W4A16、BitDistiller/EfficientQAT的W2A16和BitNet的W1(.58)A8。T-MAC在多种设备上展现出显著性能提升,例如在Surface Laptop 7上,单核处理速度可达20 tokens/s,四核可达48 tokens/s,比llama.cpp快4~5倍。
model_optimization - 开源神经网络模型压缩与优化工具集
GithubMCTModel Compression Toolkit开源项目模型压缩神经网络优化量化
Model Compression Toolkit (MCT)是一个专注于神经网络模型优化的开源项目,旨在满足高效硬件约束下的部署需求。MCT提供多种量化方法,包括训练后量化和基于梯度的训练后量化,同时支持数据生成和结构化剪枝等功能。此工具集还具备针对特定目标平台的优化能力,为研究人员和开发者提供了全面的模型压缩解决方案。
ml-cvnets - 灵活的计算机视觉模型训练库
CVNetsGithub图像分类对象检测开源项目模型训练计算机视觉
CVNets是一个计算机视觉库,支持研究人员和工程师训练和评估多种计算机视觉模型,包括对象分类、对象检测和语义分割等任务。最新版本引入了直接处理文件字节的Transformer和高效在线增强,支持如Mask R-CNN、EfficientNet、Swin Transformer和ViT等模型,并增强了蒸馏功能。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号