Project Icon

U-Time

深度学习模型实现高频睡眠自动分期

U-Sleep是基于U-Time时间序列分割模型开发的深度学习系统,专门用于高频睡眠自动分期。它能适应多种临床人群和多导睡眠记录协议,提供准确稳健的分期结果。该项目包含模型的完整实现,支持训练和评估,并提供命令行接口便于操作使用。

mcfly - 简化时间序列深度学习的开源框架
GithubTensorflowmcfly回归分析开源项目时间序列分类深度学习
mcfly是一个开源的深度学习框架,专门用于时间序列分类和回归。它能直接处理原始数据,无需计算信号特征或专业领域知识,在加速度计数据的活动分类等任务中表现出色。该框架基于TensorFlow 2构建,支持Python 3.10和3.11,并提供可视化工具展示模型配置和性能。mcfly与传统机器学习技术相比具有竞争力,欢迎社区贡献。
TimeMoE-50M - 混合专家时间序列预测基础模型 提升大规模数据分析能力
GithubHuggingfaceTimeMoE基础模型开源项目时间序列预测模型深度学习混合专家模型
TimeMoE-50M是一个基于混合专家(MoE)架构的时间序列预测基础模型,专为处理十亿规模数据而设计。此模型旨在优化大规模时间序列分析的准确性和效率。开发者可在GitHub页面上找到详细的使用指南和实现方法,有助于将其整合到各类时间序列分析项目中,提升预测能力。
nixtla - 精准的时间序列预测和异常检测,适用于多领域的生成式预训练模型
GithubTimeGPT开源项目异常检测时间序列零样本推理预测
TimeGPT是一款生成式预训练模型,专注于时间序列分析,支持零样本推断。该模型可应用于零售、电力、金融、物联网等多个领域,通过简洁的代码实现精准的预测与异常检测。TimeGPT提供灵活的API访问,兼容多种编程语言和平台。基于大规模数据集的训练,它在多种频率下的预测表现卓越,特别适合需要快速、精确时间序列分析的应用。
SAITS - 基于自注意力机制的时间序列插补新方法
GithubPyPOTSSAITS开源项目时间序列插补深度学习自注意力机制
SAITS是一种基于纯自注意力机制的时间序列插补方法,无需递归设计。该方法克服了RNN模型的速度慢、内存限制和误差累积等缺点,在多个数据集上优于现有方法。SAITS采用联合优化训练,模型结构简洁高效,仅需Transformer 15-30%的参数即可获得可比性能。在平均绝对误差上,SAITS比BRITS提高12-38%,比NRTSI提高7-39%,同时训练速度提升2-2.6倍。该方法为时间序列插补研究提供了新的思路。
night-enhancement - 将层分解与光效抑制结合的无监督夜间图像增强方法
ECCVGithub图像处理夜间图像增强开源项目无监督学习计算机视觉
这个项目提出了一种新型无监督夜间图像增强方法,结合层分解和光效抑制技术来提升夜间图像质量。该方法能有效去除不必要的光效,同时提高图像整体可见度。在多个低光照数据集上,这种方法展现出优异性能,为夜间图像处理领域开辟了新思路。项目公开了源代码、预训练模型和数据集,便于研究人员进行深入研究和应用。
Lizzy Sleep - 儿童睡眠辅助应用提供全天候实时咨询服务
AI助手AI工具Lizzy Sleep独立睡眠睡眠顾问育儿
Lizzy Sleep应用为父母提供24小时实时聊天和个性化睡眠计划,旨在培养儿童独立入睡能力。应用简化了育儿信息,提供30分钟可读的睡眠方案和AI辅助的人工监督聊天功能,解答各类睡眠问题。该应用由睡眠顾问和工程师共同开发,致力于改善家庭整体睡眠质量。
Time-Series-Works-Conferences - 全面的时间序列研究与预测资源集合
Github开源项目数据分析时间序列机器学习深度学习预测
这是一个汇集时间序列研究最新进展的资源库,整合了多领域的论文、代码和会议信息。项目涵盖多变量预测、概率预测、数据插补和异常检测等任务,提供详细的论文分类和方法总结。同时收录了相关数据集和开源代码,为时间序列研究提供全面的参考。
chronos-t5-mini - 基于T5架构的轻量级时间序列预测模型
Chronos-T5GithubHuggingface基础模型开源项目时间序列预测概率预测模型预训练模型
Chronos-T5-Mini是一款基于T5架构的预训练时间序列预测模型,拥有2000万参数。该模型将时间序列转换为token序列进行训练,可生成概率性预测。Chronos-T5-Mini在大量公开时间序列数据和合成数据上训练,适用于多种时间序列预测任务。通过Chronos Pipeline,研究人员和开发者可以便捷地使用该模型进行推理,获得精确的预测结果。
awesome-AI-for-time-series-papers - 时间序列分析领域的人工智能前沿研究与资源集锦
AIGithub开源项目数据挖掘时间序列机器学习深度学习
这是一个全面收录人工智能在时间序列分析(AI4TS)领域最新研究成果的资源库。项目汇集了顶级AI会议和期刊发表的论文、教程和综述,涉及时间序列、时空数据、事件数据等多个方面。资源库实时更新NeurIPS、ICML、KDD等重要会议的相关论文,为AI4TS领域的研究人员和工程师提供了丰富且及时的学术参考。
chronos-t5-tiny - 轻量级预训练时间序列预测模型
Chronos-T5GithubHuggingface开源项目时间序列预测概率预测模型语言模型预训练模型
Chronos-T5-Tiny是基于T5架构的轻量级预训练时间序列预测模型,拥有800万参数。它将时间序列转换为token序列进行训练,可生成概率性预测。该模型在大量公开和合成时间序列数据上训练,能处理多种预测任务,适合快速部署和推理。作为Chronos系列的一员,它为时间序列分析提供了高效的解决方案。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号