Project Icon

plotly-resampler

Plotly动态重采样库实现大规模时序数据高效可视化

plotly-resampler为Plotly图表增加动态重采样功能,实现大规模时序数据的高效可视化。该库根据当前视图动态聚合数据,在用户交互时保持高效响应。它采用tsdownsample的优化实现,默认使用MinMaxLTTB方法选取1000个绘图点。plotly-resampler支持多种环境和聚合算法,保留了Plotly的灵活性。这个库能显著提升处理和展示大型时序数据集的能力,适用于需要可视化海量顺序数据的场景。

umap-js - JavaScript实现的UMAP算法用于降维和数据可视化
GithubJavaScript实现UMAP-JS开源项目数据可视化机器学习降维技术
umap-js是UMAP算法的JavaScript实现,为数据降维和可视化提供高效解决方案。该库支持同步、异步和逐步拟合,以及监督投影和数据转换。通过npm安装,umap-js提供灵活的参数配置,适用于浏览器和Node.js环境下的数据分析与可视化项目。它是t-SNE的替代方案,可用于非线性降维。umap-js使用随机嵌入而非谱嵌入作为优化起点,适用于较小数据集。它不包含角度距离和稀疏数据表示的特殊功能,但保留了UMAP的核心算法特性。
tsfeatures - 时间序列特征提取的Python工具库
GithubPythontsfeatures开源项目数据分析时间序列特征提取
tsfeatures是一个Python库,用于计算时间序列数据的多种特征。作为R语言tsfeatures包的Python实现,它提供了自相关、异方差、熵、平稳性等统计指标的计算功能。该库支持自定义特征函数和处理不同频率的时间序列数据,并允许与R版本结果进行对比。tsfeatures适用于需要进行时间序列分析和建模的数据处理场景。
mplfinance - Python金融数据可视化库
GithubPythonmatplotlibmplfinance开源项目数据可视化金融数据
mplfinance是一个基于matplotlib的Python库,用于金融数据可视化和分析。它提供简洁API,可创建蜡烛图、OHLC图、线图等多种金融图表。支持日线和分钟线数据,可添加移动平均线、成交量等技术指标,并支持图表样式自定义。与Pandas数据框架兼容,适合金融数据探索和分析。
hypertools - 简化高维数据可视化和分析的Python工具包
GithubHyperToolsPython工具包开源项目数据可视化降维高维数据
HyperTools是一个用于高维数据可视化和分析的Python工具包。它能够将复杂的高维数据集降维,并生成直观的可视化结果。该工具包整合了matplotlib、scikit-learn和seaborn等库,提供数据对齐、聚类和描述等功能。HyperTools主要面向需要分析复杂数据结构的数据科学家和研究人员。
ipydatagrid - Jupyter环境中的快速数据网格工具
GithubJupyteripydatagrid交互式可视化开源项目数据分析数据网格
ipydatagrid是专为Jupyter Notebook和JupyterLab开发的数据网格工具。它具有全功能界面,支持高性能操作,并与ipywidgets无缝集成。该工具允许通过多种渲染器自定义数据展示,提供双向数据绑定的选择模型,并支持使用Vega表达式进行条件格式化。ipydatagrid显著提升了Jupyter环境中的数据交互和可视化效果。
pyroscope - 开源连续性能分析平台 帮助开发者优化代码
GithubGrafanaPyroscope开源开源项目性能分析连续分析
Pyroscope是一个开源的连续性能分析平台,可帮助开发者发现代码性能问题和瓶颈。它支持高基数标签分析,能够解决CPU使用率高、内存泄漏等问题,并可分析应用调用树。Pyroscope具有低CPU开销,支持水平扩展和高效压缩,兼容多种编程语言,并提供先进的分析界面。它能自动关联性能数据与追踪信息,是一个强大的代码性能优化工具。
tsflex - 高效灵活的时间序列处理和特征提取Python工具包
GithubPython库tsflex开源项目数据分析时间序列处理特征提取
tsflex是一个Python工具包,用于时间序列处理和特征提取。它支持多变量、多模态时间序列数据,并可与多种处理和特征提取库集成。tsflex采用基于视图的操作,实现低内存占用和快速执行。该工具包提供直观的API,对序列数据几乎没有假设,能处理异步数据。此外,tsflex还具备特征选择、执行时间记录和序列化等高级功能。
stumpy - 高效计算时间序列矩阵剖面的Python库
GithubPython库STUMPY开源项目数据挖掘时间序列矩阵分析
STUMPY是一个高效的Python库,用于计算时间序列矩阵剖面。支持多维数据分析、分布式计算和GPU加速,适用于模式发现、异常检测等多种数据挖掘任务。其简单易用的特性使研究人员和开发者能够快速分析复杂的时间序列数据。
plotille - Python终端绘图库支持多种图表类型
GithubPlotillePython库开源项目数据可视化无依赖终端绘图
plotille是一个纯Python实现的终端绘图库,支持在命令行环境中创建折线图、散点图、直方图和热力图等多种图表类型。该库使用盲文点和颜色进行绘制,无需外部依赖。plotille提供Figure类用于创建复杂图表,也有简单的绘图函数用于快速绘图。此外,plotille支持时间序列数据可视化,并通过Canvas类实现自定义绘图。这个轻量级库适用于需要在终端进行数据可视化的场景。
Time-series-classification-and-clustering-with-Reservoir-Computing - 基于储层计算的时间序列分析框架
GithubReservoir Computing开源项目时间序列分类时间序列聚类机器学习神经网络
这个开源项目利用储层计算技术,实现了时间序列数据的分类、聚类和预测功能。它支持处理单变量和多变量时间序列,并提供了易用的Python库。项目包含多个功能模块、丰富的数据集和高级示例。其特有的储层模型空间表示方法在处理复杂时间序列任务时表现出色。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号