Project Icon

accelerated-scan

GPU加速的并行扫描算法高效解决一阶递归

accelerated-scan是一个Python包,实现了GPU上高效的一阶并行关联扫描。该项目采用分块处理算法和GPU通信原语,能快速处理状态空间模型和线性RNN中的一阶递归问题。支持前向和后向扫描,提供C++ CUDA内核和Triton实现,在不同序列长度下均有出色性能表现。适用于深度学习和信号处理等需要高性能递归计算的领域。

deepsnap - 高效灵活的图神经网络库 支持异构图和标准化流程
DeepSNAPGithubNetworkXPyTorch Geometric图深度学习开源项目异构图
DeepSNAP是一个专为图神经网络设计的Python库,连接NetworkX和PyTorch Geometric,提供灵活的图操作和标准化流程。它支持高效的图操作和转换、异构图处理,并提供数据集分割、负采样等功能。DeepSNAP的API易于使用,适用于节点分类、链接预测和图分类等多种图学习任务。
tgscan - 高效搜索Telegram内容的开源工具
GithubTelegram实时索引开源软件开源项目搜索工具聊天记录
tgscan是一个开源的Telegram搜索工具,提供快速搜索结果和直观界面。它支持频道、群组和聊天记录搜索,使用文本分类技术识别不同类型的内容。tgscan的近实时索引功能确保搜索结果及时更新,为用户提供高效的Telegram内容检索体验。
tiny-gpu - 简化GPU实现深入解析并行计算原理
GPUGithub内存并行化开源项目指令集架构
tiny-gpu是一个精简的GPU实现项目,旨在帮助学习者理解GPU工作原理。该项目聚焦通用GPU和机器学习加速器的核心原理,包括架构设计、SIMD并行化和内存管理。通过Verilog实现、架构文档和矩阵运算示例,tiny-gpu简化了复杂概念,使学习者能从底层理解现代硬件加速器的关键要素。
tensorpack - 高效的神经网络训练接口,支持多GPU和分布式训练
GithubTensorpack可重复性研究开源项目数据加载性能训练速度高质量实现
Tensorpack是基于TensorFlow的神经网络训练接口,专注于提升训练速度与性能。其高效的数据加载和并行化策略显著提高了训练速度,尤其是在CNN上的表现比Keras代码快1.2到5倍。Tensorpack适合需要可重复和灵活研究的开发者,支持多GPU和分布式训练,并提供多个著名论文的高质量复现案例。Tensorpack并不是一个模型包装器,用户可以灵活使用TensorFlow及其他高层API。
dgl - 图深度学习框架加速图神经网络应用与研究
DGLGithub分布式训练图神经网络大规模图开源项目深度学习
DGL是一个高效易用的Python包,支持在图上执行深度学习。兼容PyTorch、Apache MXNet和TensorFlow等多种框架,提供GPU加速的图库、丰富的GNN模型示例、全面的教学材料及优化的分布式训练功能。适合从研究人员到行业专家的各类用户。广泛应用于学术及实践领域,无论是基础教学还是高级图分析,DGL均能有效支持。
pytorch_connectomics - PyTorch Connectomics加速大脑神经连接图谱构建
GithubPyTorch Connectomics图像分割开源项目深度学习框架神经连接重建连接组学
PyTorch Connectomics是一个面向神经科学领域的开源深度学习框架,专门用于处理电子显微镜采集的大脑图像数据。该框架支持连接组学中的自动和半自动语义及实例分割,提供多任务学习、主动学习和半监督学习功能。它采用分布式和混合精度优化技术,能高效处理大规模数据集。框架包含多种编码器-解码器架构,如定制3D UNet和特征金字塔网络模型,并提供全面的体积数据增强功能。由哈佛大学视觉计算组维护,PyTorch Connectomics致力于加速大脑神经连接图谱的重建过程。
channel-pruning - 通道剪枝技术加速深度神经网络
Channel PruningGithub开源项目模型压缩深度学习神经网络加速计算机视觉
Channel Pruning 项目开发了一种通道剪枝技术,用于加速深度神经网络。该技术显著提高了 VGG-16、ResNet-50 等模型的推理速度,同时保持了较高准确率。项目还包含针对 Faster R-CNN 的剪枝方法,为计算机视觉任务提供了高效解决方案。具体实现了 VGG-16 模型 4 倍和 5 倍的加速,ResNet-50 模型 2 倍加速,以及 Faster R-CNN 2 倍和 4 倍加速。这些优化后的模型在 ImageNet 分类和目标检测任务上仍保持了较高性能。项目提供了代码和预训练模型,方便研究者复现实验结果。
skypilot - 高效部署AI和批处理作业至全球云平台
GPUGithubLLMSkyPilot云计算开源项目成本节约热门
SkyPilot是一个为LLMs和AI提供的框架,支持在任意云平台运行,最大化GPU利用率和降低成本。该框架通过自动管理作业队列,简化了扩展操作,还提供了对象存储的简便接入。用户可以在全球任一区域的云中自动故障转移,使用管理型Spot实例以较低成本运行,同时自动选择成本最优的机型和区域。
rcg - RCG框架实现突破性无条件图像生成性能
GithubPyTorchRCG图像生成开源项目神经网络自监督学习
RCG是一种创新的自监督图像生成框架,在ImageNet 256x256数据集上达到了无条件图像生成的最佳性能。该框架缩小了无条件和有条件图像生成之间的性能差距。项目提供基于PyTorch的GPU实现,包含表示扩散模型(RDM)以及MAGE、DiT、ADM和LDM等多种像素生成器的训练和评估代码。同时提供预训练模型和可视化工具,便于研究人员复现和拓展相关工作。
gtsfm - 高性能并行结构运动恢复管线GTSfM
3D重建GTSAMGTSfMGithub并行计算开源项目结构运动恢复
GTSfM是一个基于GTSAM的开源结构运动恢复(SfM)管线,专为并行计算设计。它利用Dask实现分布式处理,集成了SuperPoint和SuperGlue等先进算法。GTSfM提供Python接口,无需编译即可使用。该项目支持多种场景重建任务,可与Nerfstudio等工具集成,为计算机视觉领域提供了灵活高效的解决方案。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

Trae

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号