Project Icon

opacus

简化PyTorch差分隐私训练流程

Opacus库简化了在PyTorch模型中实现差分隐私训练的流程,只需最少量的代码修改,且对训练性能影响小。用户可以实时在线监控隐私预算的使用情况。Opacus适用于机器学习从业者和差分隐私研究人员,提供简便的安装方式和详细的教程,帮助用户快速上手。丰富的使用案例和迁移指南使其成为探索差分隐私领域的重要工具。

PyTorch_Tutorial - PyTorch深度学习实践教程
GithubPyTorch代码实践开源项目教程模型训练深度学习
PyTorch_Tutorial是一个综合性深度学习教程项目,专注于PyTorch框架的应用。教程涵盖基础到高级的模型训练技巧,提供计算机视觉、自然语言处理和大型语言模型等领域的实践案例。内容还包括ONNX和TensorRT等推理部署框架的使用指南,展示了从模型开发到部署的完整流程。项目定期更新,配有环境配置说明,适合深度学习研究者和实践者参考学习。
autograd - 支持Python和NumPy的高效自动微分库
AutogradGithubNumPyPython开源项目梯度优化自动微分
Autograd是一个自动微分库,可对原生Python和NumPy代码进行微分。它支持反向模式和前向模式微分,能高效计算标量函数对数组参数的梯度。Autograd兼容Python的多数特性,如循环、条件语句、递归和闭包,并支持高阶导数。这个库主要应用于基于梯度的优化,在机器学习、神经网络和科学计算等领域有广泛应用。
pytorch3d - 基于PyTorch的高效3D计算机视觉研究库
3D计算机视觉GithubPyTorch3D三角网格可微分渲染开源项目深度学习
PyTorch3D是一个基于PyTorch的3D计算机视觉研究库,提供高效、可复用的组件。主要功能包括三角网格操作、可微分渲染和隐式表示框架。该库与深度学习方法无缝集成,支持异构数据批处理、可微分运算和GPU加速。PyTorch3D已应用于多个研究项目,并提供全面的教程和文档。
awesome-privacy - 开源隐私和安全工具精选指南
Github双因素认证密码管理器开源软件开源项目数据加密隐私保护
本指南精选了各类注重隐私和安全的开源应用及服务,涵盖密码管理、加密通讯、安全浏览等多个领域。通过详细分类和推荐,为用户提供可靠的替代方案,帮助保护个人数据和在线隐私,减少对大型科技公司的依赖。对于重视数字安全的用户来说,这是一份实用的参考资源。
awesome-MLSecOps - 机器学习安全运维工具与资源精选MLSecOps实践指南
AI安全GithubMLSecOps开源工具开源项目攻击向量机器学习
该项目汇集了机器学习安全运维(MLSecOps)领域的开源工具、资源和教程。内容涵盖安全工具、数据保护、代码安全、攻击向量分析等多个方面,为从业者提供全面的参考资料。项目适合不同层次的MLSecOps实践者,有助于提升机器学习系统的整体安全性。
ignite - PyTorch工具库,专为简化神经网络训练与评估设计
GithubPyTorch-Ignite事件和处理器开源项目神经网络训练评估
Ignite是一个为PyTorch设计的库,帮助用户以灵活和透明的方式训练及评估神经网络。这个库通过简化代码,提供了控制简单且强大的API,支持度量和实验管理等功能。其简单的引擎和事件系统,以及开箱即用的度量工具,使得模型评估变得轻松。它还包含用于训练管理、保存工作成果和记录关键参数的内置处理器。此外,Ignite还支持自定义事件,满足高级用户需求。
lucent - 将PyTorch神经网络可视化和解释的开源库
GithubLucentPyTorch开源项目深度学习可视化特征可视化神经网络解释
Lucent是一个将Lucid库功能适配到PyTorch平台的开源项目。它为PyTorch深度学习模型提供可视化和解释功能,使研究人员能够探索神经网络内部结构、生成特征可视化和进行风格迁移。该项目提供教程和示例notebook,便于快速入门。尽管处于早期阶段,Lucent已展现出在解释和改进深度学习模型方面的潜力。
optimum-quanto - PyTorch模型量化框架 提升性能和效率
GithubOptimum QuantoPyTorch开源项目机器学习模型优化量化
Optimum Quanto是专为Optimum设计的PyTorch量化框架。它支持eager模式、多设备部署,自动插入量化/反量化存根和操作,实现从浮点到动态/静态量化模型的无缝转换。支持多种精度的权重和激活量化,有效提升模型性能和内存效率。该框架为Hugging Face和原生PyTorch模型提供简便的量化流程。
Deep-reinforcement-learning-with-pytorch - 深度强化学习PyTorch实现与代码示例
DQNDeep Reinforcement LearningGithubGymTD3pytorch开源项目
本项目提供经典和前沿的深度强化学习算法PyTorch实现,包括DQN、DDPG、PPO等。项目持续更新并维护,适用于Anaconda虚拟环境管理。详细的安装步骤和测试方法确保用户能顺利运行代码,文档中还提供了相关论文和代码链接,便于深入学习研究。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号