Project Icon

MTR

自动驾驶多模态运动预测的先进框架

MTR项目是一个创新的多模态运动预测框架,专为自动驾驶场景设计。它通过全局意图定位和局部运动细化的联合优化来进行运动预测,采用可学习的运动查询对处理不同的运动模式。在Waymo开放运动数据集的评测中,MTR在边缘和联合运动预测任务上均表现出色,位居排行榜首位。该框架以其简洁性、高效性和准确性为自动驾驶领域的多模态运动预测提供了一个有力的基准。

Agent-Driver - 革命性智能驾驶系统 融合人类智慧与AI技术
Agent-DriverGithub人工智能大型语言模型开源项目自动驾驶认知代理
Agent-Driver是一个创新型自动驾驶系统,通过大型语言模型作为认知代理,将人类智能整合到自动驾驶中。系统包括多功能工具库、认知记忆和推理引擎,实现类人的推理和决策能力。在nuScenes基准测试中,Agent-Driver性能显著超越现有方法,并展现出优秀的可解释性和少样本学习能力。这一项目为自动驾驶领域提供了新的研究方向,向实现人类级别驾驶迈进。
MVDet - 基于特征透视变换的多视角行人检测系统
GithubMVDetMultiviewX数据集多视角检测开源项目特征透视变换行人检测
MVDet是一个开源的多视角行人检测系统,采用特征透视变换技术提高检测精度。项目包含自主开发的合成数据集MultiviewX,为相关研究提供数据支持。在Wildtrack数据集上,MVDet达到88.2%的MODA。项目开放源代码和预训练模型,便于研究人员进行深入研究。
OpenSTL - OpenSTL:时空预测学习的全面基准和模块化框架
GithubNeurIPS 2023OpenSTLPyTorch开源项目数据集时空预测
OpenSTL是一个全面的时空预测学习基准,涵盖了从合成运动物体轨迹到人体运动、驾驶场景、交通流量和天气预报的多样任务。该框架模块化设计并具有良好的扩展性,支持PyTorch Lightning和原始PyTorch实现。其主要功能包括灵活的代码设计和标准基准,组织严密并易于使用。
multimodal-maestro - 多模态AI模型控制与高效提示策略框架
AI提示GithubMultimodal-MaestroPython图像处理大型多模态模型开源项目
multimodal-maestro是一个开源框架,旨在增强对大型多模态AI模型的控制能力。该项目提供先进的提示策略,使模型能够执行复杂的视觉理解任务。支持图像标注、掩码生成等功能,并具有简洁的API设计。multimodal-maestro能够充分发挥GPT-4V等多模态模型的潜力,实现更精准的视觉分析和处理。
autoformer-tourism-monthly - 基于分解架构的长期时间序列智能预测模型
AutoformerGithubHuggingface分解架构开源项目时间序列预测模型自相关机制长期预测
Autoformer是一个面向长期时间序列预测的开源模型,通过分解架构和自相关机制突破传统Transformer模型的限制。在能源、交通、经济、天气和疾病五大领域的基准测试中,预测精度提升38%,可应用于极端天气预警和能源消耗规划等长期预测场景。
MotionGPT - 文本转动作生成的通用平台
GithubLLaMAMotionGPTPyTorchfinetuning开源项目模型评估
MotionGPT是通过微调大型语言模型(LLMs)来实现通用运动生成的开源项目。项目提供详细的安装指南、预训练模型及数据集应用实例,支持高效的文本到动作转换及生成。用户可以轻松实现姿态可视化和SMPL网格渲染。项目页面详细介绍了多种使用场景,适用于各种运动生成需求。
BEV-Planner - 端到端自动驾驶中车辆状态依赖分析与评估方法创新
Githubego状态开源项目开环评估端到端模型自动驾驶路径规划
BEV-Planner项目研究端到端自动驾驶中的关键问题。研究发现在nuScenes数据集上,模型过度依赖车辆状态而忽视感知信息。项目提出新的评估指标和基准方法,全面评估规划质量。研究结果质疑当前自动驾驶研究方向,建议重新审视现有方法。项目为自动驾驶领域提供新思路,包括道路遵循性评估和简单但有效的基线模型。
DriveDreamer4D - 4D驾驶场景模拟的新突破
4D驾驶场景表示AI工具DriveDreamer4D交通约束自主驾驶视频生成模型
DriveDreamer4D利用世界模型先验,提升4D驾驶场景表示。通过闭环仿真,能将实况驾驶数据转换为新的轨迹视频,并确保视频内容的时空一致性。实验验证了其在新轨迹视频生成方面的优越性,尤其在时空连贯性上表现突出,为自主驾驶系统的研究和开发提供了有力支持。
trax - 代码清晰、高速执行的深度学习库
GithubGoogle BrainReformerTransformerTrax开源项目深度学习
Trax是一个由Google Brain团队维护的端到端深度学习库,专注于清晰代码和高速执行。它提供预训练的Transformer模型和丰富的API文档,支持用户创建和训练自定义模型,并与TensorFlow数据集无缝集成。Trax兼容CPUs、GPUs和TPUs,用户可以通过Python脚本、notebooks和命令行界面轻松使用。
gta - 几何感知注意力机制增强多视图Transformer性能
GTAGithub几何感知注意力多视图Transformer开源项目神经渲染计算机视觉
GTA是一种创新的几何感知注意力机制,旨在提升多视图Transformer的表达能力。这项技术不仅适用于新视角合成和3D场景重建等多视图任务,还可应用于图像生成等2D任务。项目提供了GTA在CLEVR-TR和MSN-Hard数据集上的官方实现代码,并展示了其在ImageNet图像生成中的应用。通过整合几何信息,GTA使Transformer更有效地处理3D空间关系,从而显著提高多视图任务的性能表现。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号