Project Icon

MTR

自动驾驶多模态运动预测的先进框架

MTR项目是一个创新的多模态运动预测框架,专为自动驾驶场景设计。它通过全局意图定位和局部运动细化的联合优化来进行运动预测,采用可学习的运动查询对处理不同的运动模式。在Waymo开放运动数据集的评测中,MTR在边缘和联合运动预测任务上均表现出色,位居排行榜首位。该框架以其简洁性、高效性和准确性为自动驾驶领域的多模态运动预测提供了一个有力的基准。

MapTR - 在线向量化高精度地图快速构建框架
GithubMapTR人工智能开源项目模型自动驾驶高精地图
MapTR是一款高效准确的在线向量化高精度地图构建框架,可应用于自动驾驶系统的复杂场景中。该框架采用统一的置换等效建模方法,结合分层查询嵌入和双向匹配策略,提高了学习过程的稳定性,具备实时推理能力,并在nuScenes和Argoverse2数据集中表现出色。MapTR支持多种地图元素,具备良好的扩展性和灵活性。最新版本MapTRv2提升了性能和收敛速度,并引入了额外的语义中心线,进一步优化下游规划需求。
MOTSFusion - 将3D多目标跟踪与场景重建融合的创新算法
3D重建GithubKITTI数据集MOTSFusion开源项目目标跟踪计算机视觉
MOTSFusion项目提出了一种创新的多目标跟踪算法,通过融合3D跟踪和场景重建技术来提高准确性。该算法利用立体图像、光流和视差信息,结合分割网络和检测器,实现对车辆和行人的精确跟踪。项目在KITTI MOTS数据集上展现了优异性能,并开源了完整代码。这种方法为自动驾驶等应用中的多目标跟踪提供了新的思路。
MeMOTR - 基于长期记忆的Transformer多目标跟踪方法
GithubMeMOTRTransformer多目标跟踪开源项目计算机视觉长期记忆
MeMOTR提出了一种基于Transformer的端到端多目标跟踪方法,通过长期记忆注入和定制记忆注意力层提升目标关联性能。该方法在DanceTrack和SportsMOT等数据集上展现出优秀的跟踪效果,为复杂场景的多目标跟踪提供了新思路。项目开源了代码、预训练模型和使用说明,便于研究者复现和改进。
MotionLLM - 融合视频和动作数据的人类行为理解先进AI模型
GithubMotionLLM人工智能人类行为理解多模态学习大语言模型开源项目
MotionLLM是一个人类行为理解框架,通过融合视频和动作序列数据来分析人类行为。该项目采用统一的视频-动作训练策略,结合粗粒度视频-文本和细粒度动作-文本数据,以获得深入的时空洞察。项目还包括MoVid数据集和MoVid-Bench评估工具,用于研究和评估人类行为理解。MotionLLM在行为描述、时空理解和推理方面展现出优越性能,为人机交互和行为分析研究提供了新的方向。
MetaTransformer - 统一12种模态的多模态学习框架
GithubMeta-Transformer人工智能多模态学习开源项目深度学习计算机视觉
Meta-Transformer是一个创新的多模态学习框架,可处理12种不同模态的数据,包括自然语言、图像、点云和音频等。该框架采用共享编码器架构和数据到序列转换方法,支持分类、检测和分割等多种任务。项目提供开源预训练模型和代码实现,为多模态AI研究提供了有力支持。
GameFormer - 结合游戏理论的自动驾驶交互预测规划模型
GameFormerGithubTransformer交互预测开源项目自动驾驶规划
GameFormer是一个创新的自动驾驶AI项目,结合游戏理论和Transformer架构进行交互式预测和规划。项目提供Waymo开放运动数据集上的交互预测联合模型代码,以及动态场景的开环规划实现。GameFormer提高了预测准确性和自动驾驶系统的决策能力,为智能交通系统研究开辟新方向。
UniTR - 多模态变换器网络推动3D感知进展
3D感知BEV分割GithubUniTR多模态转换器开源项目目标检测
UniTR是一种新型统一多模态变换器网络,用于3D感知任务。它通过共享权重处理相机和激光雷达等多传感器数据,实现高效多模态融合。在nuScenes数据集上,UniTR在3D目标检测和BEV地图分割任务中均达到最新水平,且降低推理延迟。该研究为提升自动驾驶系统的感知能力提供了新思路。
traffic_prediction - 交通预测模型与数据集综合评估
GithubPeMS数据集交通预测图神经网络开源项目时间序列深度学习
这个项目对交通预测领域的多种模型和数据集进行了系统的比较分析。它汇总了近期发表的相关论文,详细介绍了METR-LA、PeMS-BAY等常用公开数据集。项目提供了各模型在主要数据集上的性能对比图表,并探讨了实验设置的差异。同时,它还整理了可公开获取的数据集及其来源信息,为交通预测研究提供了有价值的参考资料。
MotionGPT - 构建多任务的人体动作与语言统一模型
GithubMotionGPT人体动作人机交互多模态数据开源项目模型训练
MotionGPT是一种整合人体动作和语言的统一模型,专注于两种模态间的语义耦合学习。在诸多人体动作任务中表现优异,包括文本驱动动作生成、动作标题生成及动作预测。该模型结合预训练与指令性微调,能高效处理多种动作相关任务,是动作语言模型的新代表。此外,其零拍技术使其能识别新词汇并生成相应动作,突显处理复杂场景的能力。
GPT-Driver - 将GPT-3.5模型用于自动驾驶运动规划的简便方法
GPT-DriverGithubarXiv大型语言模型开源项目自动驾驶运动规划
GPT-Driver项目将自动驾驶的运动规划问题转化为语言建模问题,利用大型语言模型的推理和泛化能力生成驾驶轨迹。通过提示-推理-微调策略,模型能够精确描述轨迹坐标并解释决策过程。实验结果显示,在大规模nuScenes数据集上,该方法表现出色,具备有效性、泛化能力和可解释性。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号