Project Icon

cond-image-leakage

改进图像到视频扩散模型中的条件图像依赖问题

该研究揭示并解决了图像到视频扩散模型中的条件图像依赖问题。研究团队提出了适用于DynamiCrafter、SVD和VideoCrafter1等多种模型的即插即用推理和训练策略。这些策略减轻了模型对条件图像的过度依赖,增强了生成视频的动态效果。项目开源的代码、模型和演示为图像到视频生成研究提供了重要参考。

stable-diffusion-2-depth - 基于深度感知的Stable Diffusion AI图像生成模型
GithubHuggingfaceStable Diffusion人工智能图像生成开源项目机器学习模型深度学习
stable-diffusion-2-depth是基于Stable Diffusion 2的深度感知AI图像生成模型。它在原有基础上增加了处理MiDaS深度预测的输入通道,实现了额外的条件控制。该模型能够根据文本提示生成和修改高分辨率图像,主要应用于AI安全部署研究、模型局限性探索和艺术创作等领域。作为开源项目,stable-diffusion-2-depth为AI图像生成技术的进步提供了新的可能性。
ImageDream - 利用图像提示的多视角扩散方法实现创新3D内容生成
GithubImageDream三维生成人工智能图像提示多视图扩散开源项目
ImageDream是一个从单一2D图像输入生成逼真3D内容的开源项目。它结合图像提示和多视角扩散技术创建高质量3D模型,支持软阴影渲染,并提供简便的配置和安装指南。该项目展示了图像引导3D生成的最新应用,为计算机视觉和图形学研究提供了新的实验平台。
Collaborative-Diffusion - 多模态控制的面部生成与编辑,协作扩散模型
CVPR 2023Collaborative DiffusionGithubMMLab@NTU多模态脸部生成开源项目脸部编辑
Collaborative Diffusion项目展示了如何通过多模态控制生成和编辑面部图像,保证生成结果与输入条件一致。该项目使用动态扩散器在每一步选择性处理不同模态,确保身份信息的准确性。最新更新包括对FreeU的支持、单模态面部生成推理脚本,以及适用于不同分辨率的模型训练和推理代码,满足多样化应用需求。
DCR - 扩散模型数据复制研究与优化方法分析
Diffusion模型Github开源项目数据复制机器学习生成式AI计算机视觉
DCR项目聚焦扩散模型中的数据复制问题,整合了两篇重要论文的研究成果和代码。项目内容包括数据复制现象分析、缓解策略提出、模型微调指南、推理方法、评估指标计算以及数据集资源。这些研究成果为提升扩散模型的生成质量和原创性提供了重要参考。
MindVideo - 大脑活动视频重建技术取得重大突破
GithubMinD-VideofMRI开源项目神经科学脑活动视频重建
MinD-Video是一种从大脑记录重建高质量视频的新型框架。该技术利用掩蔽大脑建模、多模态对比学习和增强稳定扩散模型,从fMRI数据中学习时空信息。MinD-Video可重建任意帧率的视频,在语义分类任务中准确率达85%,结构相似性指数达0.19,较先前技术提升45%。这项研究在NeurIPS 2023获得口头报告资格,为理解人类认知过程提供了新的途径。
stable-diffusion-v1-5-inpainting - 稳定扩散修复模型,提升图像生成与修复能力
GithubHuggingfaceStable Diffusion Inpainting人工智能绘画创意图片生成图像修复开源项目文本生成图像模型
Stable Diffusion Inpainting是一种基于潜在扩散模型的图像生成工具,通过文本提示生成高质量图像,支持遮罩修复。其在LAION-5B数据集上进行训练,应用于艺术和设计领域,具备生成逼真图像的能力,但在复杂文本处理上存在局限。遵循CreativeML OpenRAIL-M许可,可保证合理安全使用。了解训练和应用场景将有助于更有效地进行创新项目开发。
MIGC - 利用MIGC实现多实例文本生成图像
CVPR2024GithubMIGC多实例生成开源项目文本生成图像稳定扩散
MIGC项目的多实例生成控制器提升了文本生成图像的多样性和质量,包含COCO-MIG基准测试、在线Colab演示等资源。MIGC提升了属性控制,通过更换不同生成器权重,实现高质量和多样化图像生成。最新Consistent-MIG算法优化迭代编辑功能,保持未修改区域一致性并增强修改实例的一致性。此项目由浙江大学的ReLER实验室和华为监督。
MOFA-Video - 可控图像动画图像到视频扩散模型
ECCV 2024GithubMOFA-Video图像动画开源项目混合控制生成模型
MOFA-Video项目采用稀疏到稠密运动生成和基于流的运动适配技术,能通过轨迹、关键点序列及其组合等多种控制信号将单张图像转化为动画。最新更新包括关键点面部图像动画的推理脚本和轨迹图像动画的训练代码。该项目即将亮相ECCV 2024,并提供多个演示和检查点,便于用户测试和使用。访问项目页面了解更多详情和效果展示。
SEINE - 短视频到长视频生成的SEINE模型,支持生成过渡效果和视频预测
GithubSEINEStable DiffusionVchitect开源项目视频扩散模型视频生成
SEINE模型是一个专为短视频到长视频生成设计的视频扩散模型,支持过渡效果和视频预测。作为Vchitect视频生成系统的一部分,SEINE基于稳定扩散v1.4模型,支持从文本生成视频的框架LaVie。用户通过配置脚本可生成不同条件下的视频,文档中提供了详细的设置和使用说明。项目提供模型下载链接,并展示了实际的输入图像和输出视频效果。代码以Apache-2.0开源许可发布,可用于学术研究和商业用途。
generative-models - SV4D与SV3D一类的创新模型
GithubSDXL-TurboSV3DSV4D开源项目热门稳定AI视频合成
Generative Models项目展示了多个创新模型如SV4D与SV3D,专注于视频到4D扩散建模和图像到视频的多视角合成,旨在提供高分辨率和时间连贯性的研究工具。最新技术报告和视频概览现已发布,支持通过简单的脚本和快速入门指南直接体验模型效果,适用于研究及教育用途。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号