Project Icon

pbdl-book

将深度学习与物理模拟融合 革新数值计算方法

Physics-based Deep Learning book探讨了深度学习在物理模拟中的应用,重点关注基于场的模拟。内容涵盖监督学习、物理约束、可微分模拟和强化学习等主题,并提供Jupyter notebook实例。该书致力于结合数据驱动方法和传统数值技术,以提升模拟性能。通过流体动力学和不确定性量化等案例,展示了物理深度学习在计算效率和精度方面的应用前景。书中深入探讨了深度学习与物理知识的结合方式,同时保留了对数值方法的深入理解。实例说明如何利用深度学习解决PDE问题,强调了物理约束在学习过程中的重要性。此外,还介绍了差分物理训练和改进的学习方法,为读者提供了全面的物理深度学习入门指南。

tutorial - 机器学习和深度神经网络算法综合教程
Github人工智能开源项目机器学习深度学习神经网络算法
该教程全面介绍机器学习和深度学习算法,涵盖从基础到高级的内容。包括环境搭建、入门指南、框架介绍和核心概念。详细讲解BP神经网络、SVM、决策树等多种算法,以及回归、聚类和贝叶斯等模型。提供丰富的理论知识和实践指导,适合系统学习AI和算法的开发者参考。
openmlsys-zh - 现代机器学习系统设计与实现全面指南
GithubOpenMLSys实现经验开源项目机器学习系统设计原理
该开源项目全面介绍现代机器学习系统的设计和实现,涵盖编程接口、计算图、编译器技术、硬件加速等核心内容。同时探讨推荐系统、联邦学习、强化学习等前沿领域的系统实现。项目内容适合学生、研究人员和开发者,有助于读者深入理解机器学习系统,提升实际应用和开发能力。
machine-learning-for-trading - 深入解析机器学习在交易策略中的应用,从数据采集到模型实施
Github交易策略开源项目机器学习深度学习算法交易金融数据
《Machine Learning for Trading》第二版系统探索了机器学习在创建、回测及评估交易策略中的作用,涵盖线性回归至深度强化学习等技术,并且重点介绍了金融数据处理和生成对抗网络的使用。全书800页,包含150个实际案例,适合交易和机器学习领域的读者。
Great-Deep-Learning-Tutorials - 全面深度学习教程和实用资源集锦
GithubPyTorch人工智能开源项目机器学习深度学习神经网络
该项目汇集了深度学习领域的优质教程和资源,覆盖计算机视觉、自然语言处理、语音处理等多个方向。内容包括入门教程、高级课程、技术博客和开源代码库,涵盖模型量化、AutoML、图神经网络等前沿主题。同时提供深度模型训练的实践指南,适合系统学习和深入研究深度学习的人员参考。
XLB - 基于JAX的可微分格子玻尔兹曼方法库
GithubJAXLattice BoltzmannXLB开源项目流体动力学深度学习
XLB是一款开源的格子玻尔兹曼方法库,基于JAX构建。该库支持2D和3D模拟,具有全可微分特性,能高效解决流体动力学问题。XLB支持多GPU分布式计算,可进行大规模模拟。提供多种边界条件和碰撞核选择,并采用Python接口设计,便于使用和扩展。这些特性使XLB成为物理驱动机器学习研究的有力工具。
Deep-Learning-Projects - Jupyter notebook深度学习项目集合与实践指南
GitHubGithubJupyter Notebook开源项目教程深度学习项目
Deep-Learning-Projects是一个包含多个深度学习小项目的GitHub仓库,以Jupyter notebook形式呈现。仓库提供详细的项目说明和配套视频教程,涵盖多个深度学习领域。这些资源为不同水平的学习者和开发者提供了实践机会,有助于从理论到实践的学习过程。
uvadlc_notebooks - 深度学习系列教程,覆盖优化、Transformer、图神经网络等多个主题
GithubJAX+FlaxPyTorchUvA Deep Learning Tutorials开源项目教程深度学习
这套深度学习教程有助于理解理论知识,涵盖优化、Transformer、图神经网络等主题。基于PyTorch和PyTorch Lightning框架,并提供JAX+Flax实现。教程支持本地运行、Google Colab和Snellius集群,多种方式供选择。每个教程包含详细的笔记本,实现理论与实践相结合。本课程与正式作业和考试相关,适合想深入了解深度学习及应用的学习者。
dgl - 图深度学习框架加速图神经网络应用与研究
DGLGithub分布式训练图神经网络大规模图开源项目深度学习
DGL是一个高效易用的Python包,支持在图上执行深度学习。兼容PyTorch、Apache MXNet和TensorFlow等多种框架,提供GPU加速的图库、丰富的GNN模型示例、全面的教学材料及优化的分布式训练功能。适合从研究人员到行业专家的各类用户。广泛应用于学术及实践领域,无论是基础教学还是高级图分析,DGL均能有效支持。
www.mlcompendium.com - 机器学习与深度学习资源大全,免费公开,便于学习与作者互动
CompendiumDeep LearningGitBookGitHubGithubMachine Learning开源项目
项目为免费非营利教育工具,包含约500个机器学习及深度学习主题,如算法、特征选择、深度学习、NLP、音频处理等,帮助用户节省搜索时间,连接优秀作者。项目持续更新,支持社区贡献,致力于知识共享和教育普及。
dlpack - 促进深度学习框架间张量共享与协作
DLPackGithub内存共享开源项目张量结构深度学习框架
DLPack是一种开放的内存张量结构,用于深度学习框架间的张量共享。它简化了框架间的运算符共享,便于封装供应商级运算符实现,支持快速切换后端实现。作为跨框架复用的桥梁,DLPack不直接实现张量和操作,而是促进深度学习生态系统的协作,为用户提供更多运算符选择和框架混合使用的可能性。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

问小白

问小白是一个基于 DeepSeek R1 模型的智能对话平台,专为用户提供高效、贴心的对话体验。实时在线,支持深度思考和联网搜索。免费不限次数,帮用户写作、创作、分析和规划,各种任务随时完成!

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

Trae

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号