Project Icon

Predictive-Maintenance-using-LSTM

LSTM神经网络预测飞机发动机故障时间 助力预防性维护

这个开源项目利用LSTM神经网络分析飞机传感器数据,预测发动机剩余使用寿命和潜在故障时间。项目采用回归模型和二元分类两种方法,分别预测剩余工作周期和特定周期内的故障概率。实验结果表明,该方法在预测准确性和可靠性方面表现优异,为航空维护领域提供了实用的预测性维护解决方案。

mlforecast - 高性能可扩展的机器学习时间序列预测框架
GithubMLForecast分布式训练开源项目时间序列预测机器学习特征工程
mlforecast是一个基于机器学习模型的时间序列预测框架,具有高效的特征工程实现和良好的可扩展性。该框架支持pandas、polars、spark等多种数据格式,兼容sklearn API,能够处理海量数据。除了支持概率预测和外生变量,mlforecast还提供分布式训练功能,适用于大规模生产环境的时间序列预测任务。框架采用熟悉的fit和predict接口,便于快速上手和集成到现有项目中。
Stock-Prediction-Neural-Network-and-Machine-Learning-Examples - Python实现的股票预测神经网络和机器学习模型集
GithubPython开源项目机器学习神经网络股票预测超参数优化
这个开源项目集成了多种用于股票预测的机器学习和神经网络方法,包括遗传算法、梯度提升和K均值聚类等。项目展示了如何使用Keras、PyTorch等主流深度学习框架实现这些模型。其特色在于提供了超参数优化功能,支持多线程处理以提升效率。开发者可以方便地配置和测试不同的超参数,如学习率、批量大小和网络结构。项目还包含了使用实时市场数据进行股票预测的实例代码和详细文档,适合学习和研究股票预测技术。
iTransformer - 先进的时间序列预测模型,打造SOTA性能
GithubiTransformer人工智能开源项目时间序列预测注意力网络深度学习
iTransformer是一种基于注意力机制的时间序列预测模型,由清华大学和蚂蚁集团研究人员开发。该模型采用倒置Transformer结构,支持多变量和多步长预测。iTransformer引入了可逆实例归一化等技术,旨在提高预测准确性和处理长序列数据的能力。这个开源项目为时间序列分析提供了新的研究方向。项目提供Python实现,支持使用PyTorch框架。用户可通过pip安装并轻松集成到现有的时间序列分析工作流程中。该项目还包括实验性功能,如二维注意力和傅里叶变换增强版本,为研究人员提供了探索和改进的空间。
flow-forecast - 开源时间序列深度学习框架,支持最新模型和云端集成
Flow ForecastGithubtransformer开源开源项目时间序列预测深度学习
Flow Forecast 是一个开源时间序列预测深度学习框架,提供最新的Transformer、注意力模型、GRU等技术,并具有易于理解的解释指标、云集成和模型服务功能。该框架是首个支持Transformer模型的时间序列框架,适用于流量预测、分类和异常检测。
ML-ProjectKart - 机器学习和人工智能的优质开源项目集合
GithubML-ProjectKart开源项目机器学习深度学习自然语言处理计算机视觉
这个平台展示了多种机器学习、深度学习、计算机视觉和自然语言处理项目,帮助不同水平的用户熟练掌握ML/AI算法。技术从业人员可以通过遵循贡献指南参与项目贡献,获取实践经验并提升技能,推动开源社区的持续发展。
deep-algotrading - 深度学习算法在金融交易中的探索与实践
GithubTensorFlow开源项目深度学习神经网络过拟合金融数据
本项目展示了深度学习技术在金融交易领域的应用。从简单回归到LSTM和策略网络,逐步介绍不同复杂度的算法模型。内容包括TensorFlow使用、深度强化学习概念,以及交易策略的构建与优化。通过代码示例和详细说明,读者可学习如何将深度学习应用于金融数据分析和算法交易。这是一个面向学习者和从业者的教育资源,展示了深度学习在非传统领域的创新应用。
modeltime - R语言时间序列预测框架 整合机器学习与传统方法
GithubR语言modeltime工作流开源项目时间序列预测机器学习
modeltime是R语言的时间序列预测框架,简化了预测工作流程,整合机器学习和传统分析方法。支持ARIMA、ETS、Prophet等模型,可与tidymodels生态系统集成。通过6步流程,用户可快速构建、评估和部署预测模型,适用于高性能时间序列分析。框架还包括modeltime.h2o用于AutoML、modeltime.gluonts用于深度学习,以及modeltime.ensemble用于集成预测。这些组件共同构成了一个全面的时间序列分析生态系统,为不同规模和复杂度的预测任务提供解决方案。
LLM4TS - 大型语言模型和基础模型在时间序列分析中的最新进展
AIGithubLLM基础模型开源项目时间序列预训练
LLM4TS项目整理了时间序列分析领域中大型语言模型和基础模型的最新研究。主要内容包括时间序列LLM的进展、专用基础模型、数据集和重要发现。此外,项目还涵盖了预训练时间序列模型和LLM在推荐系统等相关领域的应用,为研究和实践提供了丰富的资源。
machine-learning - 机器学习与数据科学教程,深度学习、模型部署与强化学习
Githubmachine-learning开源项目强化学习时间序列模型部署深度学习
本项目持续更新,介绍了数据科学和机器学习各个主题。内容涵盖深度学习、模型部署、运筹学和强化学习等,提供Jupyter Notebook格式教程,结合Python科学栈(如numpy、pandas)和开源库(如scikit-learn、TensorFlow、PyTorch)进行教学示范,平衡数学符号与实际应用。
neural_prophet - 易用的开源时间序列预测框架
GithubNeuralProphetPyTorch开源项目时间序列预测模型构建
NeuralProphet是一个基于PyTorch的开源框架,将神经网络与传统时间序列算法结合,专为时间序列预测而设计。它提供简便的代码接口,支持模型定制、趋势检测、季节性分析和事件影响评估,适合高频次和长期数据。项目仍在beta阶段,欢迎社区贡献。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号