Project Icon

cleanrl

一个深度强化学习库

CleanRL是一款简洁高效的深度强化学习库,提供单文件实现和广泛的算法支持,包括PPO、DQN等。它支持本地和云端实验、Tensorboard日志记录及Weights and Biases管理,适用于研究与快速原型开发。

simple_rl - 轻量级Python强化学习实验框架
GithubPython复现结果实验开源项目强化学习简单框架
simple_rl框架专注于简化强化学习实验流程和提高结果可复现性。它内置了网格世界、OpenAI Gym等MDP环境,实现了Q-learning和R-Max等经典算法。新增的实验复现功能方便研究者重现成果。该框架支持Python 2和3,为强化学习研究和教学提供了实用工具。
DRL-Pytorch - PyTorch实现的深度强化学习算法集合
DRL算法GithubPyTorch人工智能开源项目强化学习深度学习
DRL-Pytorch项目提供多种常用深度强化学习算法的PyTorch实现,包括Q-learning、DQN变体、PPO、DDPG、TD3和SAC等。代码结构清晰统一,便于研究人员和开发者比较不同算法。项目还包含详细使用说明、依赖列表和学习资源推荐,有助于快速入门和实践。
mushroom-rl - 模块化强化学习Python库MushroomRL
GithubMushroomRLPython库开源项目强化学习机器学习深度学习
MushroomRL是一个模块化的Python强化学习库,集成主流张量计算库和RL基准测试环境。它实现了经典和深度强化学习算法,便于进行RL实验。该库兼容OpenAI Gym、PyBullet等环境,涵盖Q-Learning、DQN、DDPG等算法。MushroomRL还支持Habitat和iGibson等高真实度模拟环境,为研究提供多样化选择。
awesome-deep-rl - 全面的深度强化学习资源库
Github基准测试开源库开源项目深度强化学习环境模拟竞赛
该项目汇集了深度强化学习领域的各类资源,包括主流库、基准测试结果、训练环境、竞赛信息和发展时间线。研究人员和开发者可以在此快速了解该领域的全貌,获取有价值的工具和信息。作为一个综合性资源库,它为深度强化学习的学习和研究提供了便利。
sheeprl - 基于PyTorch的强化学习框架支持多种算法和环境
GithubLightning FabricPyTorchSheepRL开源项目强化学习算法实现
SheepRL是一个基于PyTorch和Lightning Fabric的强化学习框架。它支持PPO、SAC、Dreamer等多种算法,以及Atari、MuJoCo、Minecraft等多种环境。该框架易用可扩展,实现了算法与环境的解耦,适用于广泛的强化学习任务。在部分基准测试中,SheepRL展现出与其他框架相当甚至更优的性能,为强化学习研究和开发提供了高效工具。
easy-rl - 强化学习综合教程 从理论到实践
Github开源项目强化学习教程深度学习算法实战蘑菇书
Easy RL是一本全面的强化学习教程,涵盖从基础理论到高级算法的系统知识。内容包括马尔可夫决策过程、Q学习、策略梯度、PPO和DQN等关键概念。通过实例和项目,读者可掌握核心理论和实践技能。教程提供在线阅读、配套习题、代码和补充资源,适合强化学习初学者系统学习使用。
HandyRL - 高效实用的分布式强化学习框架
GithubHandyRLPyTorch分布式训练开源项目强化学习离线策略修正
HandyRL是一个基于Python和PyTorch的分布式强化学习框架,已在Kaggle竞赛中取得优异成绩。它采用离线策略修正的策略梯度算法和学习者-工作者架构,支持自定义环境和大规模训练。HandyRL的高并行能力和实用性使其在竞争性游戏AI开发中表现出色,能够快速训练出强大的AI模型。
Practical_RL - 强化学习开源课程:实用技巧与实践
GithubGoogle ColabHSEPractical_RLYSDA开源项目强化学习
Practical_RL是一个专注于强化学习实用性的开源课程,提供HSE和YSDA的课堂教学及线上学习支持,涵盖英语和俄语材料。课程从基础理论到实践应用,包括价值迭代、Q学习、深度学习、探索策略、策略梯度方法、序列模型及部分观察MDP等内容。学生可以通过GitHub改进课程,使用Google Colab或本地环境进行实践。适合希望在实际问题中应用强化学习的学生和研究者。
genrl - 强化学习算法库,提供快速基准测试和示例教程
GenRLGithubPyTorch基准测试开源项目强化学习算法实现
GenRL是一个基于PyTorch的强化学习库,提供可重现的算法实现和通用接口。它包含20多个从基础到高级的强化学习教程,并支持模块化和可扩展的Python编程。统一的训练和日志记录功能提高了代码复用性,同时自动超参数调整功能加速了基准测试。GenRL旨在支持新算法的实现,代码少于100行。适用于Python 3.6及以上版本,依赖于PyTorch和OpenAI Gym。
d3rlpy - 支持离线和在线深度强化学习的实用算法库
Githubd3rlpy安装开源项目强化学习离线RL算法
d3rlpy是一个为实践者和研究人员打造的深度强化学习库,支持离线和在线强化学习算法。无需掌握深度学习库,即可通过其直观的API使用多种先进算法。d3rlpy提供丰富的文档和教程,首创支持分布式Q函数,适用于机器人和医疗等复杂场景。兼容Linux、macOS和Windows,多种安装方式可供选择,欢迎试用和贡献代码。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号